Skip to main content
Log in

Characterization of Black-Light-Driven CeVO4 Photocatalysts Synthesized by Sol-Gel Method Using Citric Acid as Complexing Agent with Subsequent High Temperature Calcination

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

CeVO4 as black-light-driven photocatalysts were successfully synthesized by a sol-gel method using citric acid as a complexing agent with subsequent 450–600°C calcination for 2 h. The as-synthesized products were characterized by thermogravimetric analysis (TGA), X-ray diffraction, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The TGA analysis shows three-step weight losses caused by evaporation and decomposition of adsorbed water, organic compound, citric complex and phase transformation. X-ray diffraction and SEM results show that the samples were specified as tetragonal CeVO4 structure with particle sizes of 50–60 nm, 100–200 nm, 600–1000 nm and 800–1500 nm for 450, 500, 550, and 600°C calcination, respectively. In this research, CeVO4 nanoparticles with 450°C calcination showed the highest photocatalytic activity with OH radical as the main active species involved in photodegradation of MB under black light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. C. Fan, Q. Liu, T. Ma, et al., J. Yang, Ceram. Inter. 42, 10487 (2016). https://doi.org/10.1016/j.ceramint.2016.03.072

    Article  CAS  Google Scholar 

  2. Z. Liu, K. Sun, M. Wei, and Z. Ma, J. Colloid Interf. Sci. 531, 618 (2018). https://doi.org/10.1016/j.jcis.2018.07.077

    Article  CAS  Google Scholar 

  3. F. T. Bekena and D. H. Kuo, Mater. Sci. Semicond. Proc. 116, 105152 (2020). https://doi.org/10.1016/j.mssp.2020.105152

    Article  CAS  Google Scholar 

  4. L. Kaliraj, J. C. Ahn, E. J. Rupa, et al., J. Photochem. Photobiol. B 199, 111588 (2019). https://doi.org/10.1016/j.jphotobiol.2019.111588

    Article  CAS  PubMed  Google Scholar 

  5. S. Thambidurai, P. Gowthaman, M. Venkatachalam, and S. Suresh, Optik 207, 153865 (2020). https://doi.org/10.1016/j.ijleo.2019.163865

    Article  CAS  Google Scholar 

  6. E. S . Baeissa, Front. Nanosci. Nanotech. 2, 1 (2016). https://doi.org/10.1007/s10876-011-0396-0

    Article  CAS  Google Scholar 

  7. B. Xie, G. Lu, Q. Dai, et al., J. Clust. Sci. 22, 555 (2011). https://doi.org/10.15761/FNN.1000134

    Article  CAS  Google Scholar 

  8. Y. Wang, R. Zuo, C. Zhang, et al., J. Am. Ceram. Soc. 98, 1 (2015). https://doi.org/10.1111/jace.13378

    Article  CAS  Google Scholar 

  9. S. Mahapatra, S. K. Nayak, G. Madras, and T. N. G. Row, Ind. Eng. Chem. Res. 47, 6509 (2008). https://doi.org/10.1021/ie8003094

    Article  CAS  Google Scholar 

  10. S. Mahapatra, G. Madras, and T. N. G. Row, Ind. Eng. Chem. Res. 46, 1013 (2007). https://doi.org/10.1021/ie060823i

    Article  CAS  Google Scholar 

  11. V. Sivakumar, R. Suresh, K. Giribabu, and V. Narayanan, J. Mater. Sci.: Mater. Electron. 28, 4014 (2017).) . https://doi.org/10.1007/s10854-016-6014-z

  12. L. Yao, E. Guo, K. Sun, et al., Mater. Lett. 231, 11 (2018). https://doi.org/10.1016/j.matlet.2018.08.002

    Article  CAS  Google Scholar 

  13. M. Kurian and C. Kunjachan, J. Environ. Chem. Eng. 4, 1359 (2016). https://doi.org/10.1016/j.jece.2016.01.041

    Article  CAS  Google Scholar 

  14. L. T. Denisova, L. G. Chumilina, Y. F. Kargin, and V. M. Denisov, Inorg. Mater. 52, 44 (2016). https://doi.org/10.1134/S0020168516010040

    Article  CAS  Google Scholar 

  15. I. Othman, J. H. Zain, M. A. Haija, and F. Banat, Appl. Catal. B 266, 118601 (2020). https://doi.org/10.1016/j.apcatb.2020.118601

    Article  CAS  Google Scholar 

  16. L. Guang, Z. Xuejun, W. Fei, et al., Mater. Lett. 195, 168 (2017). https://doi.org/10.1016/j.matlet.2017.02.128

    Article  CAS  Google Scholar 

  17. F. Liu, X. Shao, Y. Yin, L. Zhao, et al., J. Rare Earths 29, 97 (2011). https://doi.org/10.1016/S1002-0721(10)60410-3

    Article  CAS  Google Scholar 

  18. J. Hou, H. Huang, Z. Han, and H. Pan, RSC Adv. 6, 14552 (2016). https://doi.org/10.1039/C5RA20049K

  19. S. Ghotekar, S. Pansambal, K. Pagar, et al., Nanochem. Res. 3, 189 (2018). https://doi.org/10.22036/NCR.2018.02.008

    Article  CAS  Google Scholar 

  20. Z. Neščáková, K. Zheng, L. Liverani, et al., Bioact. Mater. 4, 312 (2019). https://doi.org/10.1016/j.bioactmat.2019.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  21. M. A. Ahmadzadeh, S. F. Chini, and A. Sadeghi, Mater. Des. 181, 108058 (2019). https://doi.org/10.1016/j.matdes.2019.108058

    Article  CAS  Google Scholar 

  22. J. Su, L. He, W. Zhou, et al., X. Zhao, P. Zhang, J. Mater. Sci.: Mater. Electron. 31, 9328 (2020). https://doi.org/10.1007/s10854-020-03472-x

    Article  CAS  Google Scholar 

  23. L. Gao, X. Wang, L. Fei, M. Ji, et al., J. Cryst. Growth 281, 463 (2005). https://doi.org/10.1016/j.jcrysgro.2005.04.042

    Article  CAS  Google Scholar 

  24. M. Salavati-Niasari, F. Davar, and M. Farhadi, J. Sol–Gel Sci. Technol. 51, 48 (2009). https://doi.org/10.1007/s10971-009-1940-3

    Article  CAS  Google Scholar 

  25. Powder Diffraction File (JCPDS ICDD, 2001).

  26. S. Sa-nguanprang, A. Phuruangrat, T. Thongtem, and S. Thongtem, Russ. J. Inorg. Chem. 64, 1600 (2019). https://doi.org/10.1134/S0036023619120143

    Article  CAS  Google Scholar 

  27. A. Rahman and R. Jayaganthan, Russ. J. Inorg. Chem. 64, 946 (2019). https://doi.org/10.1134/S0036023619070131

    Article  CAS  Google Scholar 

  28. R. Rao, A. B. Garg, and B. N. Wani, J. Phys. Conf. Ser. 377, 012010 (2012). https://doi.org/10.1088/1742-6596/377/1/012010

    Article  CAS  Google Scholar 

  29. V. Panchal, D. Errandonea, F. J. Manjón, et al., J. Phys. Chem. Solids 100, 126 (2017). https://doi.org/10.1016/j.jpcs.2016.10.001

    Article  CAS  Google Scholar 

  30. H. Yang, J. Zha, P. Zhang, et al., Sensors Actuators B 247, 469 (2017). https://doi.org/10.1016/j.snb.2017.03.042

    Article  CAS  Google Scholar 

  31. S. Wang, D. Li, C. Yang, et al., J. Sol–Gel Sci. Technol. 84, 169 (2017). https://doi.org/10.1007/s10971-017-4471-3

    Article  CAS  Google Scholar 

  32. H. Cheng, J. Wang, Y. Zhao, and X. Han, RSC Adv. 4, 47031 (2014). https://doi.org/10.1039/C4RA05509H

  33. M. R. Islam, M. Rahman, S. F. U. Farhad, and J. Podder, Surf. Interf. 16, 120 (2019). https://doi.org/10.1016/j.surfin.2019.05.007

    Article  CAS  Google Scholar 

  34. X. She, H. Xu, H. Wang, et al., Dalton Trans. 44, 7021 (2015). https://doi.org/10.1039/C4DT03793F

    Article  CAS  PubMed  Google Scholar 

  35. R. S. Raveendra, P. A. Prashanth, R. Hari Krishna, et al., J. Asian Ceram. Soc. 2, 357 (2014). https://doi.org/10.1016/j.jascer.2014.07.008

    Article  Google Scholar 

  36. S. Kaushal, H. Kaur, S. Kumar, et al., Russ. J. Inorg. Chem. 65, 616 (2020). https://doi.org/10.1134/S0036023620040087

    Article  CAS  Google Scholar 

  37. S. Sa-nguanprang, A. Phuruangrat, T. Thongtem, and S. Thongtem, Russ. J. Inorg. Chem. 64, 1841 (2019). https://doi.org/10.1134/S0036023619140158

    Article  CAS  Google Scholar 

  38. P. Intaphong, S. Jonjana, A. Phuruangrat, et al., Dig. J. Nanomater. Bios. 10, 1281 (2015).

    Google Scholar 

  39. Y. Zheng, J. Jiang, Q. Yang, and P. Tang, Adv. Eng. Res. 9, 229 (2015). https://doi.org/10.2991/ap3er-15.2015.53

    Article  Google Scholar 

  40. M. Rahimi-Nasrabadi, F. Ahmadi, and A. Fosooni, J. Mater. Sci.: Mater. Electron. 28, 537 (2017). https://doi.org/10.1007/s10854-016-5556-4

    Article  CAS  Google Scholar 

  41. P. Ju, Y. Yu, M. Wang, et al., J. Mater. Chem. B 4, 6316 (2016). https://doi.org/10.1039/C6TB01881E

    Article  CAS  PubMed  Google Scholar 

  42. X. Yang, W. Zuo, F. Li, and T. Li, ChemistryOpen 4, 288 (2015). https://doi.org/10.1002/open.201402163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. X. Zheng, J. Yuan, J. Shen, et al., J. Mater. Sci.: Mater. Electron. 30, 5986 (2019). https://doi.org/10.1007/s10854-019-00898-w

    Article  CAS  Google Scholar 

  44. S. Mishra, M. Priyadarshinee, A. K. Debnath, et al., J. Phys. Chem. Solid. 137, 109211 (2020). https://doi.org/10.1016/j.jpcs.2019.109211

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank Center of Excellence in Materials Science and Technology, Chiang Mai University, for financial support under the administration of Materials Science Research Center, Faculty of Science, Chiang Mai University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Phuruangrat.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phuruangrat, A., Kuntalue, B., Thongtem, S. et al. Characterization of Black-Light-Driven CeVO4 Photocatalysts Synthesized by Sol-Gel Method Using Citric Acid as Complexing Agent with Subsequent High Temperature Calcination. Russ. J. Inorg. Chem. 66, 332–339 (2021). https://doi.org/10.1134/S0036023621030128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621030128

Keywords:

Navigation