Skip to main content
Log in

High-Temperature Spin Crossover in Complexes of Iron(II) closo-Borates with 2,6-Bis(benzimidazol-2-yl)pyridine

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

New iron(II) complexes with 2,6-bis(benzimidazol-2-yl)pyridine (L) and closo-borate(2–) anions—[FeL2][B10H10] ⋅ 2H2O and [FeL2][B12H12] ⋅ H2O—have been synthesized. The complexes have been characterized by static magnetic susceptibility measurements, electronic (diffuse reflectance spectra), IR, and EXAFS spectroscopy, and X-ray diffraction analysis. A study of the μeff(T) dependence in the temperature range 80–500 K has shown that the complexes exhibit a high-temperature spin crossover 1А15Т2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Spin Crossover in Transition Metal Compounds I–III, Ed. by P. Gütlich and H. Goodwin (Springer, 2004).

    Google Scholar 

  2. M. A. Halcrow, Spin-Crossover Materials Properties and Applications (Wiley, 2013).

    Book  Google Scholar 

  3. O. Kahn, J. Kröber, and C. Jay, Adv. Mater. 4, 718 (1992).

    Article  CAS  Google Scholar 

  4. L. G. Lavrenova and O. G. Shakirova, Eur. J. Inorg. Chem, 670 (2013).

  5. M. Shatruk, H. Phan, B. A. Chrisostomo, and A. Suleimenova, Coord. Chem. Rev. 289290, 62 (2015).

  6. H. L. C. Feltham, A. S. Barltrop, and S. Brooker, Coord. Chem. Rev. 344, 26 (2017).

    Article  CAS  Google Scholar 

  7. H. S. Scott, R. W. Staniland, and P. E. Kruger, Coord. Chem. Rev. 362, 24 (2018).

    Article  CAS  Google Scholar 

  8. O. G. Shakirova, L. G. Lavrenova, A. S. Bogomyakov, et al., Russ. J. Inorg. Chem. 60, 786 (2015).

    Article  CAS  Google Scholar 

  9. E. N. Frolova, T. A. Ivanova, O. A. Turanova, et al. Russ. J. Inorg. Chem. 63, 1012 (2018).

    Article  CAS  Google Scholar 

  10. P. Gamez, J. S. Costa, M. Quesada, and G. Aromí, Dalton Trans., 7845 (2009).

  11. S. Hayami, S. M. Holmes, and M. A. Halcrow, J. Mater. Chem. C 3, 7775 (2015).

    Article  CAS  Google Scholar 

  12. M. Matsuda, H. Isozaki, and H. Tajima, Chem. Lett. 37, 374 (2008).

    Article  CAS  Google Scholar 

  13. R. N. Muller, V. Elst, and S. Laurent, J. Am. Chem. Soc. 125, 8405 (2003).

    Article  CAS  Google Scholar 

  14. J.-F. Letard, N. Daro, C. Aymonier, et al., Patent EP2391631 (2011).

  15. A. Bousseksou, C. Vieu, J.-F. Letard, et al., EU Patent 1 430 552 (2004).

  16. M. Boča, R. F. Jameson, and W. Linert, Coord. Chem. Rev. 255, 290 (2011).

    Article  Google Scholar 

  17. R. Boča, P. Baran, M. Boča, et al., Inorg. Chim. Acta 278, 190 (1998).

    Article  Google Scholar 

  18. L. G. Lavrenova, I. I. Dyukova, E. V. Korotaev, et al., Russ. J. Inorg. Chem. 65, 30 (2020).

    Article  CAS  Google Scholar 

  19. A. D. Ivanova, E. V. Korotaev, V. Yu. Komarov, et al., New J. Chem. 44, 5834 (2020).

    Article  CAS  Google Scholar 

  20. I. B. Sivaev, V. I. Bregadze, and N. T. Kuznetsov, Izv. Akad. Nauk, Ser. Khim., No. 8, 1256 (2002).

  21. M. F. Hawthorne, Mol. Med. Today 4, 174 (1998).

    Article  CAS  Google Scholar 

  22. Y. Zhu, Y. Lin, Y. Z. Zhu, et al., J. Nanomater. 2010, art. 409 320 (2010).

    Google Scholar 

  23. V. V. Avdeeva, E. A. Malinina, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 62, 1673 (2017).

    Article  CAS  Google Scholar 

  24. S. E. Korolenko, V. V. Avdeeva, E. A. Malinina, et al., Russ. J. Coord. Chem. 46, 297 (2020).

    Article  CAS  Google Scholar 

  25. O. G. Shakirova, L. G. Lavrenova, and V. N. Ikorskiy, et al., Chem. Sust. Dev. 10, 757 (2002).

    Google Scholar 

  26. M. B. Bushuev, L. G. Lavrenova, Yu. G. Shvedenkov, et al., Russ. J. Coord. Chem. 34, 190 (2008).

    Article  CAS  Google Scholar 

  27. O. G. Shakirova, V. A. Daletskii, L. G. Lavrenova, et al., Russ. J. Inorg. Chem. 58, 650 (2013).

    Article  CAS  Google Scholar 

  28. H. C. Miller and E. L. Muetterties, Inorg. Synth. 10, 81 (1967).

    CAS  Google Scholar 

  29. A. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1984; Mir, Moscow, 1987).

    Google Scholar 

  30. A. Hauser, Top Curr. Chem. 233, 49 (2004).

    Article  CAS  Google Scholar 

  31. S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic Press Pure and Applied Physics, New York, 1970).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.P. Korotkevich for recording the X‑ray powder diffraction patterns and to I.V. Yushina for recording the diffuse reflectance spectra.

Funding

The work was partially supported by the Russian Science Foundation (project no. 20-63-46026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Lavrenova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, A.D., Lavrenova, L.G., Korotaev, E.V. et al. High-Temperature Spin Crossover in Complexes of Iron(II) closo-Borates with 2,6-Bis(benzimidazol-2-yl)pyridine. Russ. J. Inorg. Chem. 65, 1687–1694 (2020). https://doi.org/10.1134/S0036023620110078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620110078

Keywords:

Navigation