Skip to main content
Log in

Features of Hydrothermal Growth of Hierarchical Co3O4 Coatings on Al2O3 Substrates

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The formation of a hierarchical cobalt(II, III) oxide coating on the surface of a polycrystalline Al2O3 substrate under hydrothermal conditions was studied. Features of the microstructure of the obtained coatings were investigated by scanning electron microscopy; these coatings were shown to consist of Co3O4 nanosheets arranged perpendicular to the surface of the substrate with a blossoming flower-like structure. The production of the coating of the desired composition without crystalline impurities was confirmed by IR spectroscopy, X-ray powder diffraction analysis, and energy dispersive spectroscopy elemental analysis. The roughness of the formed Co3O4 film was estimated by atomic force microscopy. The local electrophysical characteristics of the produced oxide coating (work function of film surface, capacitance, and surface distribution maps of surface potential and capacitance contrast) were studied by scanning capacitance microscopy and Kelvin probe force microscopy. A local analysis of the current–voltage characteristics of the studied samples was made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. World Energy Outlook 2019 (IEA, Paris, 2019). https://www.iea.org/reports/world-energy-outlook-2019.

  2. International Energy Outlook 2019 (U.S. IEA, Washington, DC, 2019). https://www.eia.gov/outlooks/ieo/.

  3. M. V. Kalinina, L. V. Morozova, T. L. Egorova, et al., Glass Phys. Chem. 42, 505 (2016). https://doi.org/10.1134/S1087659616050060

    Article  CAS  Google Scholar 

  4. T. L. Simonenko, M. V. Kalinina, N. P. Simonenko, et al., Glass Phys. Chem. 44, 314 (2018). https://doi.org/10.1134/S1087659618040144

    Article  CAS  Google Scholar 

  5. T. L. Egorova, M. V. Kalinina, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 62, 1275 (2017). https://doi.org/10.1134/S0036023617100072

    Article  CAS  Google Scholar 

  6. S. Xiong, C. Yuan, X. Zhang, et al., Chem.-Eur. J. 15, 5320 (2009). https://doi.org/10.1002/chem.200802671

    Article  CAS  PubMed  Google Scholar 

  7. Y. Yan, T. Wang, X. Li, et al., Inorg. Chem. Front. 4, 33 (2017). https://doi.org/10.1039/C6QI00199H

    Article  CAS  Google Scholar 

  8. X. Li, X. Xiao, Q. Li, et al., Inorg. Chem. Front. 5, 11 (2018). https://doi.org/10.1039/C7QI00434F

    Article  CAS  Google Scholar 

  9. S. K. Meher and G. R. Rao, J. Phys. Chem. C 115, 15646. https://doi.org/10.1021/jp201200e

  10. J. Libich, J. Maca, J. Vondrak, et al., J. Energy Storage 17, 224 (2018). https://doi.org/10.1016/j.est.2018.03.012

    Article  Google Scholar 

  11. Y. Zhao, Y. Liu, J. Du, et al., Appl. Surf. Sci. 487, 442 (2019). https://doi.org/10.1016/j.apsusc.2019.05.142

    Article  CAS  Google Scholar 

  12. R. B. Rakhi, W. Chen, D. Cha, and H. N. Alshareef, Nano Lett. 12, 2559 (2012). https://doi.org/10.1021/nl300779a

    Article  CAS  PubMed  Google Scholar 

  13. Q. Liao, N. Li, S. Jin, et al., ACS Nano 9, 5310 (2015). https://doi.org/10.1021/acsnano.5b00821

    Article  CAS  PubMed  Google Scholar 

  14. Y. Gao, S. Chen, D. Cao, et al., J. Power Sources 195, 1757 (2010). https://doi.org/10.1016/j.jpowsour.2009.09.048

    Article  CAS  Google Scholar 

  15. M.-J. Deng, F.-L. Huang, I.-W. Sun, et al., Nanotecnology 20, 175602 (2009). https://doi.org/10.1088/0957-4484/20/17/175602

    Article  CAS  Google Scholar 

  16. L. Tao, Z. Bowen, W. Bei, et al., Nanoscale Res. Lett. 10, 208 (2015). https://doi.org/10.1186/s11671-015-0915-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Q. Ren, Z. Feng, S. Mo, et al., Catal. Today 332, 160 (2019). https://doi.org/10.1016/j.cattod.2018.06.053

    Article  CAS  Google Scholar 

  18. S. Vetter, S. Haffer, T. Wagner, and M. Tiemann, Sens. Actuators, B 206, 133 (2015). https://doi.org/10.1016/j.snb.2014.09.025

    Article  CAS  Google Scholar 

  19. S. G. Victoria, A. M. E. Raj, and C. Ravidhas, Mater. Chem. Phys. 162, 852 (2015). https://doi.org/10.1016/j.matchemphys.2015.07.015

    Article  CAS  Google Scholar 

  20. A. Lakehal, B. Bedhiaf, A. Bouaza, et al., Mater. Res. 21, e20170545 (2018). https://doi.org/10.1590/1980-5373-mr-2017-0545

    Article  CAS  Google Scholar 

  21. M. V. Kalinina, L. V. Morozova, I. I. Khlamov, et al., Glass Phys. Chem. 40, 578 (2014). https://doi.org/10.1134/S108765961405006X

    Article  CAS  Google Scholar 

  22. T. L. Simonenko, N. P. Simonenko, P. Yu. Gorobtsov, et al., J. Alloys Compd. 832, 154957 (2020). https://doi.org/10.1016/j.jallcom.2020.154957

    Article  CAS  Google Scholar 

  23. C. Cao, C. Hu, W. Shen, et al., J. Alloys Compd. 550, 137 (2013). https://doi.org/10.1016/j.jallcom.2012.09.069

    Article  CAS  Google Scholar 

  24. C. C. Li, X. M. Yin, Q. H. Li, et al., Chem.-Eur. J. 17, 1596 (2011). https://doi.org/10.1002/chem.201002275

    Article  CAS  PubMed  Google Scholar 

  25. L. Han, P. Tang, and L. Zhang, Nano Energy 7, 42 (2014). https://doi.org/10.1016/j.nanoen.2014.04.014

    Article  CAS  Google Scholar 

  26. W. Yang, Z. Gao, J. Ma, et al., J. Alloys Compd. 611, 171 (2014). https://doi.org/10.1016/j.jallcom.2014.04.085

    Article  CAS  Google Scholar 

  27. R. Gao, Z. Shang, L. Zheng, et al., Inorg. Chem. 58, 4989 (2019). https://doi.org/10.1021/acs.inorgchem.9b00007

    Article  CAS  PubMed  Google Scholar 

  28. H. Wang, Q. Zhao, X. Wang, et al., RSC Adv. 4, 42910 (2014). https://doi.org/10.1039/C4RA08444F

    Article  CAS  Google Scholar 

  29. Z. H. Ibupoto, S. Elhag, M. S. AlSalhi, et al., Electroanalysis 26, 1773 (2014). https://doi.org/10.1002/elan.201400116

    Article  CAS  Google Scholar 

  30. Y.-R. Zhu, P.-P. Peng, J.-Z. Wu, et al., Solid State Ionics 336, 110 (2019). https://doi.org/10.1016/j.ssi.2019.03.022

    Article  CAS  Google Scholar 

  31. R. Ding, K. Liu, X. Liu, et al., Inorg. Chem. 58, 3416 (2019). https://doi.org/10.1016/j.ssi.2019.03.022

    Article  CAS  PubMed  Google Scholar 

  32. D. Qiu, X. Ma, J. Zhang, et al., Chem. Phys. Lett. 710, 188 (2018). https://doi.org/10.1016/j.cplett.2018.08.082

    Article  CAS  Google Scholar 

  33. T. L. Simonenko, N. P. Simonenko, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 64, 1475 (2019). https://doi.org/10.1134/S0036023619120167

    Article  CAS  Google Scholar 

  34. E. P. Simonenko, N. P. Simonenko, I. A. Nagornov, et al., Russ. J. Inorg. Chem. 63, 1519 (2018). https://doi.org/10.1134/S0036023618110189

    Article  CAS  Google Scholar 

  35. T. L. Simonenko, V. M. Ivanova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 64, 1753 (2019). https://doi.org/10.1134/S0036023619140080

    Article  CAS  Google Scholar 

  36. G. P. Panasyuk, V. N. Belan, I. L. Voroshilov, et al., Theor. Found. Chem. Eng. 47, 415 (2013).

    Article  CAS  Google Scholar 

  37. J. Hao, S. Peng, H. Li, et al., J. Mater. Chem. 6, 16094 (2018). https://doi.org/10.1039/C8TA06349D

    Article  CAS  Google Scholar 

  38. G. P. Panasyuk, E. A. Semenov, I. V. Kozerozhets, et al., Dokl. Chem. 483, 272 (2018). https://doi.org/10.1134/S0012500818110022

    Article  CAS  Google Scholar 

  39. J. Zhou and Q. Li, et al., Inorg. Chem. Front. 6, 2481 (2019). https://doi.org/10.1039/C9QI00607A

    Article  Google Scholar 

  40. X. Han, F. Cheng, C. Chen, et al., Inorg. Chem. Front. 3, 866 (2016). https://doi.org/10.1039/C6QI00066E

    Article  CAS  Google Scholar 

  41. X. Zhao, Y. Liu, J. Wang, et al., Inorg. Chem. 58, 7054 (2019). https://doi.org/10.1021/acs.inorgchem.9b00706

    Article  CAS  PubMed  Google Scholar 

  42. G. M. H. Shahariar and O. T. Lim, Energies 12, 125 (2019). https://doi.org/10.3390/en12010125

    Article  CAS  Google Scholar 

  43. S. Wang, R. Wang, J. Chang, et al., Sci. Rep.-UK 8, 3182 (2018). https://doi.org/10.1038/s41598-018-21436-4

  44. X. Shi, S. Quan, L. Yang, et al., J. Mater. Sci. 54, 12424 (2019). https://doi.org/10.1007/s10853-019-03816-x

    Article  CAS  Google Scholar 

  45. J. Liu, J. Ke, Y. Li, et al., Appl. Catal., B 236, 396 (2018). https://doi.org/10.1016/j.apcatb.2018.05.042

    Article  CAS  Google Scholar 

  46. M. Liu, J. Liu, Z. Li, and F. Wang, ACS Appl. Mater. Interfaces 10, 7052 (2018). https://doi.org/10.1021/acsami.7b16549

    Article  CAS  PubMed  Google Scholar 

  47. F. Creazzo, D. R. Galimberti, S. Pezzotti, and M.-P. Gaigeot, J. Chem. Phys. 150, 041721 (2019). https://doi.org/10.1063/1.5053729

    Article  CAS  PubMed  Google Scholar 

  48. V. L. Mironov, Fundamentals of Scanning Probe Microscopy (Nizhny Novgorod, NT-MDT, 2004).

    Google Scholar 

  49. W. Benenson, J. W. Harris, H. Stocker, and H. Lutz, Handbook of Physics (New York, Springer, 2002). https://doi.org/10.1007/0-387-21632-4

Download references

Funding

This work was supported by the Council for Grants of the President of the Russian Federation for Young Scientists and Postgraduates (project no. SP-2407.2019.1). The studies in this work were performed using shared experimental facilities supported by IGIC RAS state assignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Simonenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, T.L., Bocharova, V.A., Gorobtsov, P.Y. et al. Features of Hydrothermal Growth of Hierarchical Co3O4 Coatings on Al2O3 Substrates. Russ. J. Inorg. Chem. 65, 1304–1311 (2020). https://doi.org/10.1134/S0036023620090181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620090181

Keywords:

Navigation