Skip to main content
Log in

On the Problem of the Evolutionary Origin of Schooling Behavior of Fish

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Schooling as an ecological phenomenon first arose in the early Teleostei about 200–220 million years ago; there are currently no rigorous data on the presence of this form of social behavior in older fish, including Elasmobranchii. The evolutionary path of the emergence of schools could pass through several successive stages from asociality to aggregations and proto-schools and then to true equipotential schools. Schooling fish follow the same path in their early ontogeny. This article discusses the motives for the emergence of schooling behavior (ensuring the protection and survival of ancient fish during their development of the pelagic zone) and the prerequisites for the emergence and development of schooling (characteristics that fish transitioning to schooling should have). It is quite obvious that schooling is not related to evolutionary age or phylogenetic relationships of taxonomic groups or individual species of Teleostei. The transition to a schooling lifestyle is due to a change in the ecology of fish in connection with the development of new habitat conditions. Having arisen, schooling behavior disappears and again and repeatedly arises independently not only in different groups, but also among closely related Teleostei. Evolutionarily acquired schooling can be transformed into other forms of social behavior when personalization appears. Information about the genetic nature of schooling has been given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Hereinafter, we use the system proposed by Nelson (2006).

REFERENCES

  1. Anderson, J.M., Clevenstine, A.J., Stirling, B.S., et al., Non-random co-occurrence of juvenile white sharks (Carcharodon carcharias) at seasonal aggregation sites in Southern California, Front. Mar. Sci., 2021, vol. 8, Article 688505. https://doi.org/10.3389/fmars.2021.688505

    Article  Google Scholar 

  2. Arratia, G., Phylogenetic relationships of Teleostei. Past and present, Estud. Oceanol., 2000, vol. 19, pp. 19–51.

    Google Scholar 

  3. Arratia, G., Mesozoic halecostomes and the early radiation of teleosts, in Mesozoic Fishes, pt. 3: Systematics, Paleoenvironments, Biodiversity, Munchen: Verlag Dr. Friedrich Pfeil, 2004, pp. 279–315.

  4. Arratia, G., Complexities of early Teleostei and the evolution of particular morphological structures through time, Copeia, 2015, vol. 103, no. 4, pp. 999–1025. https://doi.org/10.1643/CG-14-184

    Article  Google Scholar 

  5. Bakshtanskii, E.L., Nesterov, V.D., and Neklyudov, M.N., Formation of schooling behavior of the juvenile Atlantic salmon Salmo salar during downstream migration, Vopr. Ikhtiol., 1987, vol. 27, no. 6, pp. 1000–1009.

    Google Scholar 

  6. Baskin, L.M., Tolpa i stado (Crowd and Herd), St. Petersburg: Nestor-Istoriya, 2017.

  7. Blaylock, R.A., A massive school of cownose rays, Rhinoptera bonasus (Rhinopteridae), in lower Chesapeake Bay, Virginia, Copeia, 1989, vol. 1989, no. 3, pp. 744–748. https://doi.org/10.2307/1445506

    Article  Google Scholar 

  8. Boucot, A.J., Evolutionary Paleobiology of Behaviour and Coevolution, Amsterdam: Elsevier Sci., 1990. https://doi.org/10.1016/C2009-0-08704-2

  9. Bouveroux, T., Loiseau, N., Barnett, A., et al., Companions and casual acquaintances: The nature of associations among bull sharks at a shark feeding site in Fiji, Front. Mar. Sci., 2021, vol. 8, Article 678074. https://doi.org/10.3389/fmars.2021.678074

    Article  Google Scholar 

  10. Breder, C.M., Studies on social groupings in fishes, Bull. AMNH, 1959, vol. 117, Article 6, pp. 393–482.

  11. Burns, A.L.J., Herbert-Read, J.E., Morrell, L.J., and Ward, A.J.W., Consistency of leadership in shoals of mosquitofish (Gambusia holbrooki) in novel and in familiar environments, PLOS ONE, 2012, vol. 7, no. 5, Article e36567. https://doi.org/10.1371/journal.pone.0036567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colin, S.P., The neuroecology of cartilaginous fishes: Sensory strategies for survival, Brain Behav. Evol., 2012, vol. 80, no. 2, pp. 80–96. https://doi.org/10.1159/000339870

    Article  Google Scholar 

  13. Colin, S.P., Kempster, K.M., and Yopak, K.E., How elasmobranchs sense their environment, in Fish Physiology, Amsterdam: Elsevier, 2015, Vol. 34, Pt. A, pp. 19–99. https://doi.org/10.1016/B978-0-12-801289-5.00002-X

  14. Collins, A.B., Heupel, M.R., and Motta, P.J., Residence and movement patterns of cownose rays Rhinoptera bonasus within a south-west Florida estuary, J. Fish. Biol., 2007, vol. 71, no. 4, pp. 1159–1178. https://doi.org/10.1111/j.1095-8649.2007.01590.x

    Article  Google Scholar 

  15. Connaughton, M.A. and Taylor, M.H., Seasonal and daily cycles in sound production associated with spawning in the weakfish, Cynoscion regalis, Environ. Biol. Fish., 1995, vol. 42, no. 3, pp. 233–240. https://doi.org/10.1007/BF00004916

    Article  Google Scholar 

  16. Crowe, L.M., O’brien, O., Curtis, T.H., et al., Characterization of large basking shark Cetorhinus maximus aggregations in the western North Atlantic Ocean, J. Fish. Biol., 2018, vol. 92, no. 5, pp. 1371–1384. https://doi.org/10.1111/jfb.13592

    Article  CAS  PubMed  Google Scholar 

  17. Darkov, A.A., Ekologicheskie osobennosti zritel’noi signalizatsii ryb (Ecological Features of Visual Signaling in Fish), Moscow: Nauka, 1980.

  18. De La, Parra., Venegas, R., Hueter, R., González Cano, J., et al., An unprecedented aggregation of whale sharks, Rhincodon typus, in Mexican coastal waters of the Caribbean Sea, PLOS ONE, 2011, vol. 6, no. 4, Article e18994. https://doi.org/10.1371/journal.pone.0018994

    Article  CAS  Google Scholar 

  19. Demšar, J., Štrumbelgj, E., and Bajec, I.L., A balanced mixture of antagonistic pressures promotes the evolution of parallel movement, Sci. Rep., 2016, vol. 6, Article 39428. https://doi.org/10.1038/srep39428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dimond, S.J., The Social Behaviour of Animals, London: Batsford, 1970.

    Google Scholar 

  21. Disler, N.N., Organy chuvstv sistemy bokovoi linii i ikh znachenie v povedenii ryb (Sensory Organs of the Lateral Line System and their Significance in the Behavior of Fish), Moscow: Akad. Nauk SSSR, 1960.

  22. Dmitrieva, E.N., Stages of development of the nonmigratory bream, Tr. Inst. Morfol. Zhivotnykh Akad. Nauk SSSR, 1960, no. 28, pp. 41–78.

  23. Dugatkin, L.A., Cooperation Among Animals: An Evolutionary Perspective, Oxford: Oxford Univ. Press, 1997.

    Book  Google Scholar 

  24. Economakis, A.E. and Lobel, P.S., Aggregation behavior of the grey reef shark, Carcharhinus amblyrhynchos, at Johnston Atoll, Central Pacific Ocean, Environ. Biol. Fish., 1998, vol. 51, no. 2, pp. 129–139. https://doi.org/10.1023/A:1007416813214

    Article  Google Scholar 

  25. Eibl-Eibesfeldt, I., Freiwasserbeobachtungen zur Deutung des Schwarmverhaltens verschiedener Fische, Z. Tierpsychol., 1962, vol. 19, no. 2, pp. 165–182. https://doi.org/10.1111/j.1439-0310.1962.tb00767.x

    Article  Google Scholar 

  26. Faucher, K., Parmentier, E., Becco, C., et al., Fish lateral system is required for accurate control of shoaling behaviour, Anim. Behav., 2010, vol. 79, no. 3, pp. 679–687. https://doi.org/10.1016/j.anbehav.2009.12.020

    Article  Google Scholar 

  27. Fish, F.E., Goetz, K.T., Rugh, D.J., and Brattström, L.V., Hydrodynamic patterns associated with echelon formation swimming by feeding bowhead whales (Balaena mysticetus), Mar. Mammal Sci., 2013, vol. 29, no. 4, pp. E498–E507. https://doi.org/10.1111/mms.12004

    Article  Google Scholar 

  28. Froese, R. and Pauly, D., FishBase. World Wide Web Electronic Publication, Version 08/2022, 2022. www.fishbase.org.

  29. Gerasimov, V.V., Ekologo-fiziologicheskie zakonomernosti stainogo povedeniya ryb (Ecological and Physiological Patterns of Schooling Behavior of Fish), Moscow: Nauka, 1983.

  30. Gonçalves-de-Freitas, E., Bolognesi, M.C., Santos, Gauy A.C., et al., Social behavior and welfare in Nile tilapia, Fishes, 2019, vol. 4, no. 2, Article 23. https://doi.org/10.3390/fishes4020023

    Article  Google Scholar 

  31. Greenwood, A.K., Wark, A.R., Yoshida, K., and Peichel, C.L., Genetic and neural modularity underlie the evolution of schooling behavior in threespine sticklebacks, Curr. Biol., 2013, vol. 23, no. 19, pp. 1884–1888. https://doi.org/10.1016/j.cub.2013.07.058

    Article  CAS  PubMed  Google Scholar 

  32. Greenwood, A.K., Ardekani, R., McCann, S.R., et al., Genetic mapping of natural variation in schooling tendency in the threespine stickleback, G3-Genes Genom. Genet., 2015, vol. 5, no. 5, pp. 761–769. https://doi.org/10.1534/g3.114.016519

    Article  Google Scholar 

  33. Gregson, J.N.S. and Burt de Perera T., Shoaling in eyed and blind morphs of the characin Astyanax fasciatus under light and dark conditions, J. Fish. Biol., 2007, vol. 70, no. 5, pp. 1615–1619. https://doi.org/10.1111/j.1095-8649.2007.01430.x

    Article  Google Scholar 

  34. Guttridge, T.L., Gruber, S.H., Gledhill, K.S., et al., Social preferences of juvenile lemon sharks, Negaprion brevirostris, Anim. Behav., 2009, vol. 78, no. 2, pp. 543–548. https://doi.org/10.1016/j.anbehav.2009.06.009

    Article  Google Scholar 

  35. Haulsee, D.E., Fox, D.A., Breece, M.W., et al., Social network analysis reveals potential fission-fusion behavior in a shark, Sci. Rep., 2016, vol. 6, Article 34087. https://doi.org/10.1038/srep34087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heupel, M.R. and Simpfendorfer, C.A., Quantitative analysis of aggregation behavior in juvenile blacktip sharks, Mar. Biol., 2005, vol. 147, no. 5, pp. 1239–1249. https://doi.org/10.1007/s00227-005-0004-7

    Article  Google Scholar 

  37. Heyman, W.D., Graham, R.T., Kjerfve, B., and Johannes, R.E., Whale sharks Rhincodon typus aggregate to feed on fish spawn in Belize, Mar. Ecol. Prog. Ser., 2001, vol. 215, pp. 275–282. https://doi.org/10.3354/meps215275

    Article  Google Scholar 

  38. Il’ina, L.K., Local movements and structure of the school of fish fry in the coastal zone of the Rybinsk Reservoir, Tr Inst. Biol. Vnutr. Vod Akad. Nauk SSSR, 1968, vol. 19, no. 16, pp. 182–201.

    Google Scholar 

  39. Ioannou, C.C., Guttal, V., and Couzin, I.D., Predatory fish select for coordinated collective motion in virtual prey, Science, 2012, vol. 337, no. 6099, pp. 1212–1215. https://doi.org/10.1126/science.1218919

    Article  CAS  PubMed  Google Scholar 

  40. Jacoby, D.M.P., Croft, D.P., and Sims, D.W., Social behaviour in sharks and rays: Analysis, patterns and implications for conservation, Fish Fish., 2012, vol. 13, no. 4, pp. 399–417. https://doi.org/10.1111/j.1467-2979.2011.00436.x

    Article  Google Scholar 

  41. Kajiura, S.M. and Tellman, S.L., Quantification of massive seasonal aggregations of blacktip sharks (Carcharhinus limbatus) in southeast Florida, PLOS ONE, 2016, vol. 11, no. 3, Article e0150911. https://doi.org/10.1371/journal.pone.0150911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kasumyan, A.O., The lateral line in fish: Structure, function, and role in behavior, J. Ichthyol., 2003, vol. 43, no. Suppl. 2, pp. S175–S213.

  43. Kasumyan, A.O. and Pavlov, D.S., Evolution of schooling behavior in fish, J. Ichthyol., 2018, vol. 58, no. 5, pp. 670–678. https://doi.org/10.1134/S0032945218050090

    Article  Google Scholar 

  44. Keenleyside, M.H.A., Diversity and Adaptation in Fish Behavior, Heidelberg: Springer-Verlag, 1979.

    Book  Google Scholar 

  45. Kerr, J.P., Grouping behaviour of the zebrafish as influenced by social isolation, Am. Zool., 1962, vol. 2, no. 4, pp. 532–533.

    Google Scholar 

  46. Khodorevskaya, R.P., Ruban, G.I., and Pavlov, D.S., Povedenie, migratsii, raspredelenie i zapasy osetrovykh ryb Volgo-Kaspiiskogo basseina (Behavior, Migrations, Distribution and Stocks of Sturgeons in the Volga–Caspian Basin), Moscow: KMK, 2007.

  47. Klimley, A.P., Schooling in Sphyrna lewini, a species with low risk of predation: A non-egalitarian state, Z. Tierpsychol., 1985, vol. 70, no. 4, pp. 297–319. https://doi.org/10.1111/j.1439-0310.1985.tb00520.x

    Article  Google Scholar 

  48. Kohler, D., Experimente zum Schwarmverhalten des Uklei, Aquarien-Terrarien, 1988, vol. 35, no. 7, pp. 239–243.

    Google Scholar 

  49. Konings, A., Guide to Tanganyika Cichlids, El Paso: Cichlid Press, 2005.

    Google Scholar 

  50. Kotrschal, A., Szorkovszky, A., Herbert-Read, J., et al., Rapid evolution of coordinated and collective movement in response to artificial selection, Sci. Adv., 2020, vol. 6, no. 49, Article eaba3148. https://doi.org/10.1126/sciadv.aba3148

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kowalko, J.E., Rohner, N., Rompani, S.B., et al., Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms, Curr. Biol., vol. 23, no. 19, pp. 1874–1883. https://doi.org/10.1016/j.cub.2013.07.056

  52. Krause, J., The influence of food competition and predation risk on size-assortative shoaling in juvenile chub (Leuciscus cephalus), Ethology, 1994, vol. 96, no. 2, pp. 105–116. https://doi.org/10.1111/j.1439-0310.1994.tb00886.x

    Article  Google Scholar 

  53. Krause, J. and Godin, J.-G.J., Shoal choice in the banded killifish (Fundulus diaphanus, Teleostei, Cyprinodontidae): Effects of predation risk, fish size, species composition and size of shoals, Ethology, 1994, vol. 98, no. 2, pp. 128–136. https://doi.org/10.1111/j.1439-0310.1994.tb01063.x

    Article  Google Scholar 

  54. Krause, J. and Ruxton, G.D., Living in Groups, Oxford: Oxford Univ. Press, 2002.

    Book  Google Scholar 

  55. Krause, J., Hoare, D., Krause, S., et al., Leadership in fish shoals, Fish Fish., 2000, vol. 1, no. 1, pp. 82–89. https://doi.org/10.1111/j.1467-2979.2000.tb00001.x

    Article  Google Scholar 

  56. Kronauer, D.J.C. and Levine, J.D., The ultimate and proximate underpinnings of social behavior, J. Exp. Biol., 2017, vol. 220, no. 1, pp. 4–5. https://doi.org/10.1242/jeb.152785

    Article  PubMed  Google Scholar 

  57. Kryzhanovskii, S.G., Smirnov, A.I., and Soin, S.G., Materials on the development of fishes of the Amur River, in Tr. Amurskoi ikhtiologicheskoi ekspeditsii 1945–1949 gg. (Proc. Amur Ichthyological Expedition 1945–1949), Moscow: MOIP, 1951, Vol. 2, pp. 5–222.

  58. Kryzhanovskii, S.G., Disler, N.N., and Smirnova, E.N., Ecological and morphological regularities in the development of perciform fishes (Percoidei), Tr. Inst. Morfol. Zhivotnykh Akad. Nauk SSSR, 1953, no. 10, pp. 3–138.

  59. Lange, N.O., Stages of development of the Kuban and Don roach Rutilus rutilus heckeli (Nordmann) and the Caspian roach Rutilus rutilus caspicus (Jakowlew), Tr. Inst. Morfol. Zhivotnykh Akad. Nauk SSSR, 1960a, no. 25, pp. 47–98.

  60. Lange, N.O., Stages of roach development in various ecological conditions, Tr. Inst. Morfol. Zhivotnykh Akad. Nauk SSSR, 1960b, no. 28, pp. 5–40.

  61. Larsson, M., Possible functions of the octavolateralis system in fish schooling, Fish Fish., 2009, vol. 10, no. 3, pp. 344–353. https://doi.org/10.1111/j.1467-2979.2009.00330.x

    Article  Google Scholar 

  62. Larsson, M., Why do fish school?, Curr. Zool., 2012, vol. 58, no. 1, pp. 116–128. https://doi.org/10.1093/czoolo/58.1.116

    Article  Google Scholar 

  63. Larsson, M., Schooling fish: A multisensory approach, in Reference Module in Earth Systems and Environmental Sciences, Oxford: Elsevier Inc., 2014, pp. 1–15. https://doi.org/10.1016/B978-0-12-409548-9.09037-0

  64. Lauder, G.V. and Liem, K.F., The evolution and interrelationships of actinopterygian fishes, Bull. Mus. Comp. Zool., 1983, vol. 150, no. 3, pp. 95–197.

    Google Scholar 

  65. Leblond, C. and Reebs, S.G., Individual leadership and boldness in shoals of golden shiners (Notemigonus crysoleucas), Behaviour, 2006, vol. 143, no. 10, pp. 1263–1280. https://doi.org/10.1163/156853906778691603

    Article  Google Scholar 

  66. LeBoeuf, A.C., Benton, R., and Keller, L., The molecular basis of social behavior: Models, methods and advances, Curr. Opin. Neurobiol., 2013, vol. 23, no. 1, pp. 3–10. https://doi.org/10.1016/j.conb.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  67. Lorenz, K.Z., The evolution of behavior, Sci. Am., 1958, vol. 199, no. 6, pp. 67–82. https://doi.org/10.1038/scientificamerican1258-67

    Article  CAS  PubMed  Google Scholar 

  68. Lorenz, K., On Aggression, London: Routledge, 2002.

    Google Scholar 

  69. Makris, N.C., Ratilal, P., Symonds, D.T., et al., Fish population and behavior revealed by instantaneous continental shelf-scale imaging, Science, 2006, vol. 311, no. 5761, pp. 660–663. https://doi.org/10.1126/science.1121756

    Article  CAS  PubMed  Google Scholar 

  70. Manning, A., An Introduction to Animal Behaviour, London: Edward Arnold, 1979. Manteifel’, B.P., Ekologicheskie i evolyutsionnye aspekty povedeniya zhivotnykh (Ecological and Evolutionary Aspects of Animal Behavior), Moscow: Nauka, 1987.

  71. Mikheev, V.N., Choice between individual and schooling behavior in fishes with a facultative social strategy, J. Ichthyol., 1995, vol. 35, no. 8, pp. 167–172.

    Google Scholar 

  72. Mikheev, V.N., Neodnorodnost’ sredy i troficheskie otnosheniya u ryb (Heterogeneity of the Environment and Trophic Relationships in Fish), Moscow: Nauka, 2006.

  73. Mizumoto, N., Miyata, S., and Pratt, S.C., Inferring collective behaviour from a fossilized fish shoal, Proc. R. Soc. B., 2019, vol. 286, no. 1903, Article 20190891. https://doi.org/10.1098/rspb.2019.0891

  74. Mochek, A.D., Etologicheskaya organizatsiya pribrezhnykh soobshchestv morskikh ryb (Ethological Organization of Coastal Marine Fish Communities), Moscow: Nauka, 1987.

  75. Moller, P., Electric Fishes: History and Behavior, London: Chapman and Hall, 1995.

    Google Scholar 

  76. Morrow, J.E., Schooling behaviour in fishes, Quart. Rev. Biol., 1948, vol. 23, no. 1, pp. 27–38. https://doi.org/10.1086/396078

    Article  PubMed  Google Scholar 

  77. Mourier, J., Vercelloni, J., and Planes, S., Evidence of social communities in a spatially structured network of a free-ranging shark species, Anim. Behav., 2012, vol. 83, no. 2, pp. 389–401. https://doi.org/10.1016/j.anbehav.2011.11.008

    Article  Google Scholar 

  78. Murray, A.M., A new Paleocene genus and species of percopsid, Massamorichthys wilsoni (Paracanthopterygii) from Joffre Bridge, Alberta, Canada, J. Vertebr. Paleontol., 1996, vol. 16, no. 4, pp. 642–652. https://doi.org/10.1080/02724634.1996.10011354

    Article  Google Scholar 

  79. Myers, R.F., Micronesian Reef Fishes, Barrigada, Guam: Coral Graphics, 1991.

    Google Scholar 

  80. Myrberg, A.A. and Gruber, S.H., The behaviour of the bonnethead shark, Sphyrna tiburo, Copeia, 1974, vol. 1974, no. 2, pp. 358–374. https://doi.org/10.2307/1442530

    Article  Google Scholar 

  81. Nelson, J.S., Fishes of the World, New York: John Wiley and Sons, 2006.

    Google Scholar 

  82. Novitskaya, L.I., Predshestvenniki ryb, beschelyustnye—nachalo puti k cheloveku (Predecessors of Fish, Jawless Animals—The Beginning of the Path to Human), Moscow: GEOS, 2015.

  83. Olsen, A.M., Synopsis of biological data on the school shark, Galeorhinus australis (Macleay 1881), FAO Fish. Synop., Rome: FAO, 1984, no. 139.

  84. Origin and Phylogenetic Interrelationships of Teleosts: Honoring Gloria Arratia, München: Verlag Dr. Friedrich Pfeil, 2010.

  85. O’Toole, B., Phylogeny of the species of the superfamily Echeneoidea (Perciformes: Carangoidei: Echeneidae, Rachycentridae, and Coryphaenidae), with an interpretation of echeneid hitchhiking behaviour, Can. J. Zool., 2002, vol. 80, no. 4, pp. 596–623. https://doi.org/10.1139/z02-031

    Article  Google Scholar 

  86. Panov, E.N., Povedenie zhivotnykh i etologicheskaya struktura populyatsii (Animal Behavior and the Ethological Structure of Populations), Moscow: Nauka, 1983.

  87. Papastamatiou, Y.P., Bodey, T.W., Caselle, J.E., et al., Multiyear social stability and social information use in reef sharks with diel fission-fusion dynamics, Proc. R. Soc. B., 2020, vol. 287, no. 1932, Article 20201063. https://doi.org/10.1098/rspb.2020.1063

  88. Parzefall, J., Field observations in epigean and cave populations of the Mexican characid Astyanax mexicanus (Pisces, Characidae), Mém. Biospéol., 1983, vol. 10, pp. 171–176.

    Google Scholar 

  89. Patterson, C., Osteichthyes: Teleostei, in The Fossil Record 2, London: Chapman and Hall Press, 1993, pp. 621–656.

    Google Scholar 

  90. Pavlov, D.S., Optomotornaya reaktsiya i osobennosti orientatsii ryb v potoke vody (Optomotor Reaction and Peculiarities of Fish Orientation in Water Flow), Moscow: Nauka, 1970.

  91. Pavlov, D.S. and Kasumyan, A.O., Patterns and mechanisms of schooling behavior in fish: A review, J. Ichthyol., 2000, vol. 40, no. Suppl. 2, pp. S163–S231.

  92. Pitcher, T.J., Fish schooling, in Encyclopedia of Ocean Sciences, San Diego: Acad. Press, 2001, pp. 975–987. https://doi.org/10.1006/rwos.2001.0022

  93. Pitcher, T.J. and Parrish, B.L., Functions of shoaling behavior in teleosts, in Behaviour of Teleost Fishes, London: Chapman and Hall, 1993, pp. 262–439.

    Book  Google Scholar 

  94. Popper, A.N. and Platt, C., Inner ear and lateral line, in The Physiology of Fishes, Boca Raton: CRC Press, 1993, pp. 99–136.

    Google Scholar 

  95. Radakov, D.V., Schooling in the Ecology of Fish, New York: John Wiley, 1973.

    Google Scholar 

  96. Rangeley, R.W. and Kramer, D.L., Tidal effects on habitat selection and aggregation by juvenile pollock Pollachius virens in the rocky intertidal zone, Mar. Ecol. Prog. Ser., 1995, vol. 126, pp. 19–29. https://doi.org/10.3354/meps126019

    Article  Google Scholar 

  97. Ranta, E., Juvonen, S.K., and Peuhkuri, N., Further evidence for the size-assortative schooling in sticklebacks, J. Fish. Biol., 1992, vol. 41, no. 4, pp. 627–630. https://doi.org/10.1111/j.1095-8649.1992.tb02689.x

    Article  Google Scholar 

  98. Rieucau, G., Kiszka, J.J., Castillo, J.C., et al., Using unmanned aerial vehicle (UAV) surveys and image analysis in the study of large surface-associated marine species: A case study on reef sharks Carcharhinus melanopterus shoaling behavior, J. Fish. Biol., 2018, vol. 93, no. 1, pp. 119–127. https://doi.org/10.1111/jfb.13645

    Article  PubMed  Google Scholar 

  99. Rogers, C., Roden, C., Lohoefener, R., et al., Behavior, distribution, and relative abundance of cownose ray schools Rhinoptera bonasus in the northern Gulf of Mexico, Northeast Gulf Sci., 1990, vol. 11, no. 1, pp. 69–76. https://doi.org/10.18785/negs.1101.08

    Article  Google Scholar 

  100. Roose, R., Oliver, M., Haulsee, D., et al., The sociality of Atlantic sturgeon and sand tiger sharks in estuarine environment, Anim. Behav., 2022, vol. 193, pp. 181–191. https://doi.org/10.1016/j.anbehav.2022.08.008

    Article  Google Scholar 

  101. Sbikin, Yu.N., Some aspects of the social and defensive behavior of young sturgeon (Acipenseridae), Zool. Zh., 1996, vol. 75, no. 3, pp. 383–390.

    Google Scholar 

  102. Schilds, A., Mourier, J., Huveneers, C., et al., Evidence for non-random co-occurrences in a white shark aggregation, Behav. Ecol. Sociobiol., 2019, vol. 73, no. 10, Article 138. https://doi.org/10.1007/s00265-019-2745-1

    Article  Google Scholar 

  103. Seghers, B.H., Schooling behavior in the guppy (Poecilia reticulata): An evolutionary response to predation, Evolution, 1974, vol. 28, no. 3, pp. 486–489. https://doi.org/10.2307/2407174

    Article  PubMed  Google Scholar 

  104. Shaw, E., Schooling fishes: The school, a truly egalitarian form of organization in which all members of the group are alike in influence, offers substantial benefits to its participants, Am. Sci., 1978, vol. 66, no. 2, pp. 166–175.

    Google Scholar 

  105. Sheehan, M.J., Miller, C.H., Vogt, C.C., and Ligon, R.A., Behavioral evolution: Can you dig it?, Curr. Biol., 2018, vol. 28, no. 1, pp. R17–R36. https://doi.org/10.1016/j.cub.2017.11.016

    Article  CAS  Google Scholar 

  106. Sims, D.W., Southall, E.J., Quayle, V.A., and Fox, A.M., Annual social behaviour of basking sharks associated with coastal front areas, Proc. R. Soc. B., 2000, vol. 267, no. 1455, pp. 1897–1904. https://doi.org/10.1098/rspb.2000.1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sims, D.W., Berrow, S.D., O’Sullivan, K.M., et al., Ircles in the sea: Annual courtship “torus” behavior of basking sharks Cetorhinus maximus identified in the eastern North Atlantic Ocean, J. Fish. Biol., 2022, vol. 101, no. 5, pp. 1160–1181. https://doi.org/10.1111/jfb.15187

    Article  PubMed  PubMed Central  Google Scholar 

  108. Smirnova, E.N., Morpho-ecological features of the development of the vyrezub Rutilus frisii (Nordm.), Tr. Inst. Morfol. Zhivotnykh Akad. Nauk SSSR, 1957a, no. 20, pp. 95–120.

  109. Smirnova, E.N., Features of the development of the Kuban fish in the embryonic and larval periods of life, Tr. Inst. Morfol. Zhivotnykh Akad. Nauk SSSR, 1957b, no. 20, pp. 71–94.

  110. Smirnova, E.N., Morpho-ecological features of the development of the kutum Rutilus frisii kutum Kamensky, Tr. Inst. Morfol. Zhivotnykh Akad. Nauk SSSR, 1961, no. 33, pp. 3–29.

  111. Social Behaviour: Genes, Ecology and Evolution, Cambridge: Cambridge Univ. Press, 2010. https://doi.org/10.1017/CBO9780511781360

  112. Soin, S.G., Kasumyan, A.O., and Pashchenko, N.I., Ecological and morphological analysis of the development of the minnow, Phoxinus phoxinus (Cyprinidae), J. Ichthyol., 1981, vol. 21, no. 4, pp. 90–105.

    Google Scholar 

  113. Sperone, E., Micarelli, P., Andreotti, S., et al., Social interactions among bait-attracted white sharks at Dyer Island (South Africa), Mar. Biol. Res., 2010, vol. 6, no. 4, pp. 408–414. https://doi.org/10.1080/17451000903078648

    Article  Google Scholar 

  114. Taylor, J.G., Seasonal occurrence, distribution and movements of the whale shark, Rhincodon typus, at Ningaloo Reef, Western Australia, Mar. Freshw. Res., 1996, vol. 47, no. 4, pp. 637–642. https://doi.org/10.1071/MF9960637

    Article  Google Scholar 

  115. Tinbergen, N., Social Behaviour in Animals, with Special Reference to Vertebrates, London: Methuen, 1953.

    Google Scholar 

  116. Tinbergen, N., On aims and methods of ethology, Z. Tierpsychol., 1963, vol. 20, no. 4, pp. 410–433. https://doi.org/10.1111/J.1439-0310.1963.TB01161.X

    Article  Google Scholar 

  117. Vasnetsov, V.V., Ereemeva, E.F., Lange, N.O., et al., Stages of development of commercial semi-anadromous fishes of the Volga and Don—bream, carp, vobla, roach, and zander, Tr. Inst. Morfol. Zhivotnykh Akad. Nauk SSSR, 1957, no. 17, pp. 7–79.

  118. Wark, A.R., Greenwood, A.K., Taylor, E.M., et al., Heritable differences in schooling behavior among threespine stickleback populations revealed by a novel assay, PLOS ONE, 2011, vol. 6, no. 3, Article e18316. https://doi.org/10.1371/journal.pone.0018316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Werren, J.H., Selfish genetic elements, genetic conflict, and evolutionary innovation, PNAS, 2011, vol. 108, no. Suppl. 2, pp. 10863–10870. https://doi.org/10.1073/pnas.1102343108

  120. Williams, M., Rearing environments and their effects on schooling of fishes, Pubbl. Staz. Zool. Napoli, 1976, vol. 40, pp. 238–254.

    Google Scholar 

  121. Wilson, S.G., Basking sharks (Cetorhinus maximus) schooling in the southern Gulf of Maine, Fish. Oceanogr., 2004, vol. 13, no. 4, pp. 283–286. https://doi.org/10.1111/j.1365-2419.2004.00292.x

    Article  Google Scholar 

  122. Wright, D., QTL mapping of behavior in the zebrafish, in Zebrafish Models in Neurobehavioral Research. Neuromethods, Totowa, NJ: Humana Press, 2011, vol. 52, pp. 101–141. https://doi.org/10.1007/978-1-60761-922-2_5

  123. Wright, D., Rimmer, L.B., Pritchard, V.L., et al., Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio), Naturwissenschaften, 2003, vol. 90, no. 8, pp. 374–377. https://doi.org/10.1007/s00114-003-0443-2

    Article  CAS  PubMed  Google Scholar 

  124. Wright, D., Nakamichi, R., Krause, J., and Butlin, R.K., QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio), Behav. Genet., 2006, vol. 36, no. 2, pp. 271–284. https://doi.org/10.1007/s10519-005-9029-4

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their sincere gratitude to A.D. Mochek, L.M. Baskin (Institute of Ecology and Evolution, Russian Academy of Sciences) and K.V. Kuzishchin and E.A. Marusov (Moscow State University) for valuable advice when discussing the issues raised in the article, and also grateful to A.A. Kazhlaev, A.S. Patseva and L.S. Alekseeva (Moscow State University), who provided great assistance in preparing the article for publication. The authors are sincerely grateful to P.I. Kirillov (Institute of Ecology and Evolution, Russian Academy of Sciences) for careful and constructive editing of the text and illustrations, which improved the quality of the article.

Funding

The article was prepared within the framework of scientific projects of the state assignment of the Moscow State University No. 121032300100-5 and the Institute of Ecology and Evolution, Russian Academy of Sciences No. 121122300056-3 in the Unified State Information System for Accounting the Results of Civil Research, Development and Technological Works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kasumyan.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by S. Avodkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasumyan, A.O., Pavlov, D.S. On the Problem of the Evolutionary Origin of Schooling Behavior of Fish. J. Ichthyol. 63, 1374–1389 (2023). https://doi.org/10.1134/S0032945223070135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945223070135

Keywords:

Navigation