Skip to main content
Log in

The Microstructure and Mechanical Properties of Al–Mg–Fe–Ni–Zr–Sc Alloy after Isothermal Multidirectional Forging

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effects of isothermal multidirectional forging (IMF) on the grain structure, second-phase particles of solidification origin, and dispersoids in the Al–4.9Mg–0.9Ni–0.9Fe–0.2Zr–0.1Sc alloy have been investigated. The strain distribution over the sample volume during forging in a closed die has been analyzed using a finite-element simulation. A method of considering the friction effect and changes in strain rate when constructing stress–strain curves based on the IMF results has been proposed. Increasing the number of phase cycles at 350°C has resulted in a two-fold decrease in the average phase particle size of solidification origin and the formation of a structure with an average grain size of 1.3 ± 0.2 μm, but did not change the parameters of dispersoids. IMF increased the yield strength of the alloy by 60% and the tensile strength by 20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. H. Kim, S. Kang, N. Tsuji, and Yo. Minamino, “Elongation increase in ultra-fine grained Al–Fe–Si alloy sheets,” Acta Mater. 53, 1737–1749 (2005). https://doi.org/10.1016/j.actamat.2004.12.022

    Article  CAS  Google Scholar 

  2. S. Fritsch and M. F. Wagner, “On the effect of natural aging prior to low temperature ECAP of a high-strength aluminum alloy,” Metals 8, 63 (2018). https://doi.org/10.3390/met8010063

    Article  CAS  Google Scholar 

  3. I. Nikulin, A. Kipelova, S. Malopheyev, and R. Kaibyshev, “Effect of second phase particles on grain refinement during equal-channel angular pressing of an Al–Mg–Mn alloy,” Acta Mater. 60, 487–497 (2012). https://doi.org/10.1016/j.actamat.2011.10.023

    Article  CAS  Google Scholar 

  4. R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Prog. Mater. Sci. 51, 881–981 (2006). https://doi.org/10.1016/j.pmatsci.2006.02.003

    Article  CAS  Google Scholar 

  5. S. V. Krymskiy, E. V. Avtokratova, O. Sh. Sitdikov, A. V. Mikhaylovskaya, and M. V. Markushev, “Structure of the aluminum alloy Al–Cu–Mg cryorolled to different strains,” Phys. Met. Metallogr. 116, 676–683 (2015). https://doi.org/10.1134/s0031918x15050105

    Article  Google Scholar 

  6. L. Bhatta, A. Pesin, A. P. Zhilyaev, P. Tandon, C. Kong, and H. Yu, “Recent development of superplasticity in aluminum alloys: A review,” Metals 10, 77 (2020). https://doi.org/10.3390/met10010077

    Article  CAS  Google Scholar 

  7. N. Kumar, “Severe plastic deformation of Al–Mg–Si alloys processed through rolling techniques: A review,” Metallogr., Microstructure, Anal. 11, 353–404 (2022). https://doi.org/10.1007/s13632-022-00859-6

    Article  CAS  Google Scholar 

  8. N. Kumar, G. M. Owolabi, and R. Jayaganthan, “Al 6082 alloy strengthening through low strain multi-axial forging,” Mater. Charact. 155, 109761 (2019). https://doi.org/10.1016/j.matchar.2019.06.003

    Article  CAS  Google Scholar 

  9. M. Noda, M. Hirohashi, and K. Funami, “Low temperature superplasticity and its deformation mechanism in grain refinement of Al–Mg alloy by multi-axial alternative forging,” Mater. Trans. 44, 2288–2297 (2003). https://doi.org/10.2320/matertrans.44.2288

    Article  CAS  Google Scholar 

  10. S. Y. Mironov, G. A. Salishchev, M. M. Myshlyaev, and R. Pippan, “Evolution of misorientation distribution during warm ‘abc’ forging of commercial-purity titanium,” Mater. Sci. Eng., A 418, 257–267 (2006). https://doi.org/10.1016/j.msea.2005.11.026

    Article  CAS  Google Scholar 

  11. Z. Zhang, T. Wang, and P. Lin, “Effect of forging steps on microstructure evolution and mechanical properties of Ti-6Al-4V alloy during multidirectional isothermal forging,” Procedia Manuf. 50, 817–821 (2020). https://doi.org/10.1016/j.promfg.2020.08.147

    Article  Google Scholar 

  12. M. T. Nguyen, V. T. Le, M. H. Le, and T. A. Nguyen, “Superplastic properties in a Ti5Al3Mo1.5V titan alloy processed by multidirectional forging process,” Mater. Lett. 307, 131004 (2022). https://doi.org/10.1016/j.matlet.2021.131004

    Article  CAS  Google Scholar 

  13. O. Sh. Sitdikov, E. V. Avtokratova, B. I. Atanov, and M. B. Markushev, “Effect of multidirectional isothermal forging on the formation of ultrafine-grained structure in alloy 1570C,” Inorg. Mater. 58, 544–554 (2022). https://doi.org/10.1134/s0020168522050107

    Article  CAS  Google Scholar 

  14. V. M. Imayev, R. A. Gaisin, E. R. Gaisina, and R. M. Imayev, “Microstructure, processing and mechanical properties of a titanium alloy Ti–20Zr–6.5Al–3.3Mo–0.3Si–0.1B,” Mater. Sci. Eng., A 696, 137–145 (2017). https://doi.org/10.1016/j.msea.2017.04.056

    Article  CAS  Google Scholar 

  15. J. Sun, X. Wang, J. Li, D. Shu, S. Wang, P. Peng, Q. Mao, T. Liu, X. Lu, Yu. Li, D. Zhu, G. Wang, and W. Qin, “Enhanced mechanical properties of ultrafine-lamella 304L stainless steel processed by multidirectional hot forging,” Vacuum 187, 110116 (2021). https://doi.org/10.1016/j.vacuum.2021.110116

    Article  CAS  Google Scholar 

  16. V. Soleymani and B. Eghbali, “Grain refinement in a low carbon steel through multidirectional forging,” J. Iron Steel Res. Int. 19 (10), 74–78 (2012). https://doi.org/10.1016/s1006-706x(12)60155-1

    Article  CAS  Google Scholar 

  17. S. Ramesh, G. Anne, N. Bhat, G. Aithal, H. Sh. Nayaka, and S. Arya, “Surface modification of multi-directional forged biodegradable Mg–Zn alloy by ball burnishing process: Modeling and analysis using deep neural network,” J. Manuf. Processes 68, 423–434 (2021). https://doi.org/10.1016/j.jmapro.2021.05.049

    Article  Google Scholar 

  18. J. Cui, H. Yang, Yu. Zhou, J. Tan, X. Chen, J. Song, G. Huang, K. Zheng, Yi. Jin, B. Jiang, and F. Pan, “Optimizing the microstructures and enhancing the mechanical properties of AZ81 alloy by adding TC4 particles,” Mater. Sci. Eng., A 863, 144518 (2023). https://doi.org/10.1016/j.msea.2022.144518

    Article  CAS  Google Scholar 

  19. N. Y. Yurchenko, N. D. Stepanov, G. A. Salishchev, V. N. Serebryany, N. S. Martynenko, E. A. Lukyanova, L. L. Rokhlin, N. Birbilis, S. V. Dobatkin, and Y. Z. Estrin, “Effect of multiaxial deformation on structure, mechanical properties, and corrosion resistance of a Mg–Ca alloy,” J. Magnesium Alloys 10, 266–280 (2022). https://doi.org/10.1016/j.jma.2021.07.004

    Article  CAS  Google Scholar 

  20. N. Yu. Yurchenko, N. D. Stepanov, G. A. Salishchev, N. S. Martynenko, E. A. Luk’yanova, L. L. Rokhlin, and S. V. Dobatkin, “Study of the structure formation during compression for selecting multiaxial deformation conditions for an Mg–Ca alloy,” Russ. Metall. (Engl. Transl.) 2018, 1046–1058 (2018). https://doi.org/10.1134/s0036029518110137

    Article  Google Scholar 

  21. S. Zhang, L. Wu, T. Gu, Yu. Shi, X. Tian, H. Li, H. Hou, and Yu. Zhao, “Effect of microstructure on the mechanical properties of ultrafine-grained Cu–Al–Ni alloys processed by deformation and annealing,” J. Alloys Compd. 923, 166413 (2022). https://doi.org/10.1016/j.jallcom.2022.166413

    Article  CAS  Google Scholar 

  22. F. Shahriyari, M. H. Shaeri, A. Dashti, Z. Zarei, M. T. Noghani, J. H. Cho, and F. Djavanroodi, “Evolution of mechanical properties, microstructure and texture and of various brass alloys processed by multi-directional forging,” Mater. Sci. Eng., A 831, 142149 (2022). https://doi.org/10.1016/j.msea.2021.142149

    Article  CAS  Google Scholar 

  23. R. Zhang, Zh. Li, X. Sheng, Ya. Gao, and Q. Lei, “Grain refinement and mechanical properties improvements in a high strength Cu–Ni–Si alloy during multidirectional forging,” Fusion Eng. Des. 159, 111766 (2020). https://doi.org/10.1016/j.fusengdes.2020.111766

    Article  CAS  Google Scholar 

  24. O. S. Sitdikov, “Effect of multidirectional forging on the fine-grained structure development in a high-strength aluminum alloy,” Pis’ma Mater. 3 (3), 215–220 (2013) [in Russian]. https://doi.org/10.22226/2410-3535-2013-3-215-220

    Article  Google Scholar 

  25. B. Cherukuri, T. S. Nedkova, and R. Srinivasan, “A comparison of the properties of SPD-processed AA-6061 by equal-channel angular pressing, multi-axial compressions/forgings and accumulative roll bonding,” Mater. Sci. Eng., A 410-411, 394–397 (2005). https://doi.org/10.1016/j.msea.2005.08.024

    Article  CAS  Google Scholar 

  26. D. Wang, W. Zhang, S. Huang, Yo. Yi, and H. He, “Effect of three-dimensional deformation at different temperatures on microstructure, strength, fracture toughness and corrosion resistance of 7A85 aluminum alloy,” J. Alloys Compd. 928, 167200 (2022). https://doi.org/10.1016/j.jallcom.2022.167200

    Article  CAS  Google Scholar 

  27. B. Das, U. S. Dixit, and B. Panda, “Effects of multi-axis forging on mechanical and microstructural properties of AA6061-T6 aluminum alloy,” in Advances in Forming, Machining and Automation (Springer Nature Singapore, 2022), pp. 47–59. https://doi.org/10.1007/978-981-19-3866-5_5

  28. O. Sitdikov, A. Goloborodko, T. Sakai, H. Miura, and R. Kaibyshev, “Grain refinement in as-cast 7475 Al alloy under hot multiaxial deformation,” Mater. Sci. Forum 426432, 381–386 (2003). https://doi.org/10.4028/www.scientific.net/msf.426-432.381

  29. N. Kumar, R. Jayaganthan, and G. M. Owolabi, “Grain refinement mechanism in 6082 Al alloy fabricated by cryo-multiaxial forging,” Mater. Sci. Eng., A 833, 142518 (2022). https://doi.org/10.1016/j.msea.2021.142518

    Article  CAS  Google Scholar 

  30. G. S. C. Reddy, L. Manjunath, and G. Manjunath, “Development of Al 6061 MWCNT MMC processed by multi-directional forging,” Mater. Today: Proc. 54, 196–198 (2022). https://doi.org/10.1016/j.matpr.2021.08.291

    Article  CAS  Google Scholar 

  31. Q. Chen, H. Geng, H. Zhang, X. Li, and G. Chen, “Microstructure and mechanical properties of in situ TiB2•TiAl3/2024Al composite subjected to multidirectional forging,” J. Mater. Res. Technol. 21, 2827–2840 (2022). https://doi.org/10.1016/j.jmrt.2022.10.098

    Article  CAS  Google Scholar 

  32. D. O. Panov, V. S. Sokolovsky, N. D. Stepanov, S. V. Zherebtsov, P. V. Panin, E. I. Volokitina, N. A. Nochovnaya, and G. A. Salishchev, “Effect of interlamellar spacing on strength-ductility combination of β-solidified γ-TiAl based alloy with fully lamellar structure,” Mater. Sci. Eng., A 862, 144458 (2023). https://doi.org/10.1016/j.msea.2022.144458

    Article  CAS  Google Scholar 

  33. A. V. Kuznetsov, D. G. Shaisultanov, N. Stepanov, G. A. Salishchev, and O. N. Senkov, “Superplasticity of AlCoCrCuFeNi high entropy alloy,” Mater. Sci. Forum 735, 146–151 (2012). https://doi.org/10.4028/www.scientific.net/msf.735.146

  34. O. Sitdikov, R. Garipova, E. Avtokratova, O. Mukhametdinova, and M. Markushev, “Effect of temperature of isothermal multidirectional forging on microstructure development in the Al-Mg alloy with nano-size aluminides of Sc and Zr,” J. Alloys Compd. 746, 520–531 (2018). https://doi.org/10.1016/j.jallcom.2018.02.277

    Article  CAS  Google Scholar 

  35. T. Sakai, H. Miura, A. Goloborodko, and O. Sitdikov, “Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475,” Acta Mater. 57, 153–162 (2009). https://doi.org/10.1016/j.actamat.2008.09.001

    Article  CAS  Google Scholar 

  36. O. Sitdikov, E. Avtokratova, and M. Markushev, “Development of ultrafine grain structure in an Al–Mg–Mn–Sc–Zr alloy during high-temperature multidirectional isothermal forging,” Met. Mater. Int. 27, 2743–2755 (2021). https://doi.org/10.1007/s12540-020-00842-2

    Article  CAS  Google Scholar 

  37. H. He, K. Chen, Yo. Yi, W. You, Yo. Guo, B. Wang, J. Tang, W. Guo, and S. Huang, “Influence of forging temperature on the microstructures and mechanical properties of a multi-directionally forged Al–Cu–Li alloy,” Met. Mater. Int. 28, 433–447 (2022). https://doi.org/10.1007/s12540-021-01022-6

    Article  CAS  Google Scholar 

  38. M. Montazeri-Pour, M. H. Parsa, H. R. Jafarian, and S. Taieban, “Microstructural and mechanical properties of AA1100 aluminum processed by multi-axial incremental forging and shearing,” Mater. Sci. Eng., A 639, 705–716 (2015). https://doi.org/10.1016/j.msea.2015.05.066

    Article  CAS  Google Scholar 

  39. M. S. Kishchik, A. V. Mikhaylovskaya, A. D. Kotov, A. O. Mosleh, W. S. Abushanab, and V. K. Portnoy, “Effect of multidirectional forging on the grain structure and mechanical properties of the Al–Mg–Mn alloy,” Materials 11, 2166 (2018). https://doi.org/10.3390/ma11112166

    Article  CAS  Google Scholar 

  40. O. Sh. Sitdikov, O. E. Mukhametdinova, E. V. Avtokratova, R. R. Garipova, and M. V. Markushev, “Microstructure, mechanical properties and thermal stability of the ultrafine grained Al–Mg–Sc–Zr alloy processed by multi-directional isothermal forging,” Mater. Phys. Mech. 33, 137–151 (2017) [in Russian].

    CAS  Google Scholar 

  41. A. A. Kishchik, A. V. Mikhaylovskaya, V. S. Levchenko, and V. K. Portnoy, “Formation of microstructure and the superplasticity of Al–Mg-based alloys,” Phys. Met. Metallogr. 118, 96–103 (2017). https://doi.org/10.1134/S0031918X16120085

    Article  CAS  Google Scholar 

  42. A. A. Kishchik, A. V. Mikhaylovskaya, A. D. Kotov, O. V. Rofman, and V. K. Portnoy, “Al–Mg–Fe–Ni based alloy for high strain rate superplastic forming,” Mater. Sci. Eng., A 718, 190–197 (2018). https://doi.org/10.1016/j.msea.2018.01.099

    Article  CAS  Google Scholar 

  43. A. V. Mikhaylovskaya, M. S. Kishchik, A. D. Kotov, and N. Y. Tabachkova, “Grain refinement during isothermal multidirectional forging due to β-phase heterogenization in Al–Mg-based alloys,” Mater. Lett. 321, 132412 (2022). https://doi.org/10.1016/j.matlet.2022.132412

    Article  CAS  Google Scholar 

  44. A. G. Mochugovskiy, N. Y. Tabachkova, M. E. Ghayoumabadi, V. V. Cheverikin, and A. V. Mikhaylovskaya, “Joint effect of quasicrystalline icosahedral and L12-strucutred phases precipitation on the grain structure and mechanical properties of aluminum-based alloys,” J. Mater. Sci. Technol. 87, 196–206 (2021). https://doi.org/10.1016/j.jmst.2021.01.055

    Article  CAS  Google Scholar 

  45. A. Yu. Churyumov, A. V. Mikhailovskaya, A. D. Kotov, A. I. Bazlov, and V. K. Portnoi, “Development of mathematical models of superplasticity properties as a function of parameters of aluminum alloys of Al–Mg–Si system,” Phys. Met. Metallogr. 114, 272–278 (2013). https://doi.org/10.1134/s0031918x1303006x

    Article  Google Scholar 

  46. A. V. Mikhaylovskaya, M. A. Ryazantseva, and V. K. Portnoy, “Effect of eutectic particles on the grain size control and the superplasticity of aluminium alloys,” Mater. Sci. Eng., A 528, 7306–7309 (2011). https://doi.org/10.1016/j.msea.2011.06.042

    Article  CAS  Google Scholar 

  47. Ya. Alemdag, S. Karabiyik, A. V. Mikhaylovskaya, M. S. Kishchik, and G. Purcek, “Effect of multi-directional hot forging process on the microstructure and mechanical properties of Al–Si based alloy containing high amount of Zn and Cu,” Mater. Sci. Eng., A 803, 140709 (2021). https://doi.org/10.1016/j.msea.2020.140709

    Article  CAS  Google Scholar 

  48. B. Wang, Yo. Yi, H. He, and S. Huang, “Effects of deformation temperature on second-phase particles and mechanical properties of multidirectionally-forged 2A14 aluminum alloy,” J. Alloys Compd. 871, 159459 (2021). https://doi.org/10.1016/j.jallcom.2021.159459

    Article  CAS  Google Scholar 

  49. A. A. Kishchik, M. S. Kishchik, A. D. Kotov, and A. V. Mikhaylovskaya, “Effect of multidirectional forging on the microstructure and mechanical properties of the Al–Mg–Mn–Cr alloy,” Phys. Met. Metallogr. 121, 489–494 (2020). https://doi.org/10.1134/s0031918x20050075

    Article  CAS  Google Scholar 

  50. B. Forbord, H. Hallem, N. Ryum, and K. Marthinsen, “Precipitation and recrystallisation in Al–Mn–Zr with and without Sc,” Mater. Sci. Eng., A 387-389, 936–939 (2004). https://doi.org/10.1016/j.msea.2003.10.374

    Article  CAS  Google Scholar 

  51. O. Sitdikov, E. Avtokratova, and M. Markushev, “Influence of strain rate on grain refinement in the Al–Mg–Sc–Zr alloy during high-temperature multidirectional isothermal forging,” Mater. Charact. 157, 109885 (2019). https://doi.org/10.1016/j.matchar.2019.109885

    Article  CAS  Google Scholar 

  52. V. N. Chuvil’deev, M. Y. Gryaznov, S. V. Shotin, V. I. Kopylov, A. V. Nokhrin, C. V. Likhnitskii, A. A. Murashov, A. A. Bobrov, N. Y. Tabachkova, and O. E. Pirozhnikova, “Investigation of superplasticity and dynamic grain growth in ultrafine-grained Al-0.5%Mg-Sc alloys,” J. Alloys Compd., 160099 (2021).

  53. A. G. Mochugovskiy, R. Yu. Barkov, A. V. Mikhaylovskaya, I. S. Loginova, O. A. Yakovtseva, and A. V. Pozdniakov, “Structure and properties of Al–4.5Mg–0.15Zr compositions alloyed with Er, Y, and Yb,” Phys. Met. Metallogr. 123, 466–473 (2022). https://doi.org/10.1134/s0031918x22050088

    Article  CAS  Google Scholar 

  54. A. V. Pozdnyakov, R. Yu. Barkov, and V. S. Levchenko, “Influence of Yb on the phase composition and mechanical properties of low-scandium Al–Mg–Mn–Zr–Sc and Al–Mg–Cr–Zr–Sc alloys,” Phys. Met. Metallogr. 121, 84–88 (2020). https://doi.org/10.1134/s0031918x20010111

    Article  CAS  Google Scholar 

  55. R. C. Buckingham, C. Argyrakis, M. C. Hardy, and S. Birosca, “The effect of strain distribution on microstructural developments during forging in a newly developed nickel base superalloy,” Mater. Sci. Eng., A 654, 317–328 (2016). https://doi.org/10.1016/j.msea.2015.12.042

    Article  CAS  Google Scholar 

  56. R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. Jensen, M. E. Kassner, W. E. King, T. R. McNelley, H. J. Mcqueen, and A. D. Rollett, “Current issues in recrystallization: A review,” Mater. Sci. Eng., A 238, 219–274 (1997). https://doi.org/10.1016/s0921-5093(97)00424-3

    Article  Google Scholar 

  57. P. A. Manohar, M. Ferry, and T. Chandra, “Five decades of the Zener equation,” ISIJ Int. 38, 913–924 (1998). https://doi.org/10.2355/isijinternational.38.913

    Article  CAS  Google Scholar 

  58. H. Buken and E. Kozeschnik, “Modeling static recrystallization in Al–Mg alloys,” Metall. Mater. Trans. A 52, 544–552 (2021). https://doi.org/10.1007/s11661-020-06100-9

    Article  CAS  Google Scholar 

  59. A. G. Mochugovskiy and A. V. Mikhaylovskaya, “Comparison of precipitation kinetics and mechanical properties in Zr and Sc-bearing aluminum-based alloys,” Mater. Lett. 275, 128096 (2020). https://doi.org/10.1016/j.matlet.2020.128096

    Article  CAS  Google Scholar 

  60. A. V. Mikhaylovskaya, A. A. Kishchik, A. D. Kotov, O. V. Rofman, and N. Y. Tabachkova, “Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy,” Mater. Sci. Eng., A 760, 37–46 (2019). https://doi.org/10.1016/j.msea.2019.05.099

    Article  CAS  Google Scholar 

  61. O. Sitdikov, E. Avtokratova, O. Latypova, and M. Markushev, “Structure, strength and superplasticity of ultrafine-grained 1570C aluminum alloy subjected to different thermomechanical processing routes based on severe plastic deformation,” Trans. Nonferrous Met. Soc. China 31, 887–900 (2021). https://doi.org/10.1016/s1003-6326(21)65547-4

    Article  CAS  Google Scholar 

  62. O. Sh. Sitdikov, E. V. Avtokratova, R. R. Ilyasov, and M. V. Markushev, “Structure and mechanical properties of the aluminum alloy 1570C after multidirectional forging with decreasing temperature and subsequent rolling,” J. Phys.: Conf. Ser. 1431, 012053 (2020). https://doi.org/10.1088/1742-6596/1431/1/012053

    Article  CAS  Google Scholar 

  63. E. Avtokratova, O. Sitdikov, M. Markushev, M. Linderov, D. Merson, and A. Vinogradov, “The processing route towards outstanding performance of the severely deformed Al–Mg–Mn–Sc–Zr alloy,” Mater. Sci. Eng., A 806, 140818 (2021). https://doi.org/10.1016/j.msea.2021.140818

    Article  CAS  Google Scholar 

Download references

Funding

Deformation behavior and mechanical properties were analyzed within the grant NSh-1752.2022.4, microstructural and finite-element analyses were performed within the framework of Russian Science Foundation 17-79-20426. TEM studies were carried out at the MISIS Material Science and Metallurgy Center of Collective Use, equipped at the expense of a project of the Russian Federation State Task No. 075-15-2021-696 for the purchase of equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mikhaylovskaya.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishchik, A.A., Aksenov, S.A., Kishchik, M.S. et al. The Microstructure and Mechanical Properties of Al–Mg–Fe–Ni–Zr–Sc Alloy after Isothermal Multidirectional Forging. Phys. Metals Metallogr. 124, 623–631 (2023). https://doi.org/10.1134/S0031918X23600665

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600665

Keywords:

Navigation