Skip to main content
Log in

Magnetoelectric Effect in Multiferroics with a Perovskite Structure

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The mechanisms of magnetoelectric effects in multiferroics with a perovskite parent phase are studied, focusing on the relationship between crystallographic distortions and magnetic and ferroelectric properties. It is shown that crystallographic distortions lead to the formation of a system of electric dipole moments ordered according to the antiferroelectric D-mode in the RCrO3 multiferroic. The polar and axial structural order parameters of RCrO3 are determined, and their classification according to irreducible representations of the \(D_{{2h}}^{{16}}\) symmetry space group is carried out. The magnetic and ferroelectric properties of the Ruddlesden–Popper structures are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. Manipatruni, D. E. Nikonov, C.-C. Lin, T. A. Gosavi, H. Liu, B. Prasad, Y.-L. Huang, E. Bonturim, R. Ramesh, and I. Young, “Scalable energy-efficient magnetoelectric spin–orbit logic,” Nature 565, 35 (2019).

    Article  CAS  Google Scholar 

  2. N. Ortega, A. Kumar, J. F. Scott, and R. S. Katiyar, “Multifunctional magnetoelectric materials for device applications,” J. Phys.: Condens. Matter 27, 504002 (2015).

    CAS  Google Scholar 

  3. K. Roy, “Energy-efficient multiferroic spin-devices and spin-circuits,” Spin 10, 2030001 (2020).

    Article  CAS  Google Scholar 

  4. C. N. R. Rao, A. Sundaresan, and R. Saha, “Multiferroic and magnetoelectric oxides: the emerging scenario,” J. Phys. Chem. Lett. 3, 2237 (2012).

    Article  CAS  Google Scholar 

  5. A. M. Shikin, D. A. Estyunin, N. L. Zaitsev, D. Glazkova, I. I. Klimovskikh, S. O. Filnov, A. G. Rybkin, E. F. Schwier, S. Kumar, A. Kimura, N. Mamedov, Z. Aliev, M. B. Babanly, K. Kokh, O. E. Tereshchenko, M. M. Otrokov, E. V. Chulkov, K. A. Zvezdin, andv A. K. Zvezdin, “Sample-dependent Dirac-point gap in MnBi2Te4 and its response to applied surface charge: A combined photoemission and ab initio study,” Phys. Rev. B 104, 115168 (2021).

    Article  CAS  Google Scholar 

  6. A. B. Harris, “Symmetry analysis for the Ruddlesden-Popper systems Ca3Mn2O7 and Ca3Ti2O7,” Phys. Rev. B 84, 064116 (2011).

    Article  Google Scholar 

  7. P. Sahlot, A. Jana, and A. M. Awasthi, “Exchange bias in multiferroic Ca3Mn2O7 effected by Dzyaloshinskii-Moriya interaction,” AIP Conf. Proc. 1942, 130009 (2018).

    Article  Google Scholar 

  8. M. V. Lobanov, M. Greenblatt, E. Caspi, J. D. Jorgensen, D. V. Sheptyakov, B. H. Toby, C. E. Botez, and P. W. Stephens, “Crystal and magnetic structure of the Ca3Mn2O7 Ruddlesden–Popper phase: neutron and synchrotron x-ray diffraction study,” J. Phys.: Condens. Matter 16, 5339 (2004).

    CAS  Google Scholar 

  9. B. H. Zhang, Z. Z. Hu, B. H. Chen, X. Q. Liu, and X. M. Chen, “Improved hybrid improper ferroelectricity in B-site substituted Ca3Ti2O7 ceramics with a Ruddlesden–Popper structure,” J. Appl. Phys. 128, 054102 (2020).

    Article  CAS  Google Scholar 

  10. D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, and S. Fusil, “Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals,” Phys. Rev. B 76, 024116 (2007).

    Article  Google Scholar 

  11. V. A. Sanina, B. Kh. Khannanov, E. I. Golovenchits, and M. P. Shcheglov, “Electric polarization in ErCrO3 induced by restricted polar domains,” Phys. Solid State 61, 370 (2019).

    Article  CAS  Google Scholar 

  12. E. A. Turov, A. V. Kolchanov, V. V. Men’shenin, I. F. Mirsaev, and V. V. Nikolaev, Symmetry and Physical Properties of Antiferromagnetics (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  13. K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Z. Levitin, “Spin-reorientation transitions in rare-earth magnetics,” Usp. Fiz. Nauk 119, 447 (1976).

    Article  CAS  Google Scholar 

  14. K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Z. Levitin, Orientation Transitions in Rare Earth Magnetics (Nauka, Moscow, 1979).

    Google Scholar 

  15. I. A. Zorin, A. M. Kadomtseva, I. B. Krynetskii, M. M. Lukina, and A. A. Mukhin, “Orientation transitions in the orthochromis of dysprosion with magnetic vacancies,” Fiz. Tv. Tela 30, 76–81 (1988).

    CAS  Google Scholar 

  16. E. F. Bertaut and J. Mareschal, “Etude de la structure magnetique des chromites d’erbium et de neodyme par diffraction neutronique,” Solid State Commun. 5, 93 (1967).

    Article  CAS  Google Scholar 

  17. A. K. Zvezdin, Z. V. Gareeva, and X. M. Chen, “Multiferroic order parameters in rhombic antiferromagnets RCrO3,” J. Phys.: Condens. Matter 33, 385801 (2021).

    CAS  Google Scholar 

  18. E. A. Turov and V. E. Naish, “On the theory of weak ferromagnetism in rare-earth orthoferrites,” Fiz. Met. Metalloved. 9, 10 (1960).

    CAS  Google Scholar 

  19. V. E. Naish and E. A. Turov, “To the theory of non-collinear ferromagnetism and antiferromagnetism in rhombic crystals. I,” Fiz. Met. Metalloved. 11, 161 (1961).

    CAS  Google Scholar 

  20. V. E. Naish and E. A. Turov, “To the theory of non-collinear ferromagnetism and antiferromagnetism in rhombic crystals. II,” Fiz. Met. Metalloved. 11, 321 (1961).

    CAS  Google Scholar 

  21. Yu. M. Izyumov, V. E. Naish, and R. P. Ozerov, Neutronogrphy of Magnetics (Atomizdam, Moscow, 1981).

    Google Scholar 

  22. J. M. Perez-Mato, M. Aroyo, A. Garcia, P. Blaha, K. Schwarz, J. Schweifer, and K. Parlinski, “Competing structural instabilities in the ferroelectric Aurivillius compound SrBi2Ta2O9,” Phys. Rev. B 70, 214111 (2004).

    Article  Google Scholar 

  23. M. Markov, L. Alaerts, H. P. C. Miranda, G. Petretto, W. Chen, J. George, E. Bousquet, P. Ghosez, G.‑M. Rignanese, and G. Hautier, “Ferroelectricity and multiferroicity in anti–Ruddlesden–Popper structures,” PNAS 118, 17 (2021).

    Google Scholar 

  24. N. A. Benedek and C. J. Fennie, “Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling,” Phys. Rev. Lett. 106, 107204 (2011).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (grant no. 19-52-80024) and the National Natural Science Foundation of China (grant no. 51961145105) and was carried out within a state task for scientific research by laboratories (order no. MN-8/1356 of 20.09.2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. V. Gareeva.

Ethics declarations

The authors declare that they do not have a conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvezdin, A.K., Gareeva, Z.V. & Chen, X.M. Magnetoelectric Effect in Multiferroics with a Perovskite Structure. Phys. Metals Metallogr. 123, 651–655 (2022). https://doi.org/10.1134/S0031918X22070213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22070213

Keywords:

Navigation