Skip to main content
Log in

Effect of Cyclic Quenching on the Austenite Stability and Work Hardening Behavior of Medium-Mn Quenching and Partitioning Steel Enabled by Intercritical Annealing

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This paper investigates the effect of cyclic heating quenching pretreatment on the structural evolution and mechanical properties of medium-Mn steels. The pretreatment had a significant effect on austenite morphology, content, and element diffusion as well as promoted a significant increase in elongation. As the number of pretreatment cycles increased to three, the austenite morphology tended to change from martensite/austenite island, blocky to thin film-like with an average size of ~0.14 μm, which resulted in a transformation rate of 78.30% austenite and a total elongation from 16 to 24.6%. This can be attributed to the strain hardening due to lattice distortion and high density of dislocations caused by pretreatment, the delay of the transformation induced plasticity effect by the morphologically stabilized austenite and the more concentrated degree of elemental enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Z. C. Li, H. Ding, R. D. K. Misra, and Z. H. Cai, “Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments,” Mater. Sci. Eng., A 682, 211–219 (2017).

    Article  CAS  Google Scholar 

  2. R. M. Wu, W. Li, C. L Wang, Y. Xiao, L. Wang, and X. J. Jin, Stability of Retained Austenite Through a Combined Intercritical Annealing and Quenching and Partitioning (IAQP) Treatment,” Acta Metall. Sin. (Engl. Lett.) 28, 386–393 (2015).

  3. I. B. Timokhina, P. D. Hodgson, and E. V. Pereloma, “Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels,” Metall. Mater. Trans. A 35, 2331–2341 (2004).

    Article  Google Scholar 

  4. D. D. Knijf, C. Föjer, L. A. I. Kestens, and R. Petrov, “Factors influencing the austenite stability during tensile testing of quenching and partitioning steel determined via in-situ electron backscatter diffraction,” Mater. Sci. Eng., A 638, 219–227 (2015).

    Article  Google Scholar 

  5. J. Min, L. G. Hector, L. Zhang, J. Lin, J. E. Carsley, and L. Sun, “Elevated-temperature mechanical stability and transformation behavior of retained austenite in a quenching and partitioning steel,” Mater. Sci. Eng., A 673, 423–429 (2016).

    Article  CAS  Google Scholar 

  6. P. Hilkhuijsen, H. J. M. Geijselaers, T. C. Bor, E. S. Perdahcıoğlu, A. H. vd Boogaard, and R. Akkerman, “Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of γ-texture,” Mater. Sci. Eng., A 573, 100–105 (2013).

    Article  CAS  Google Scholar 

  7. P. J. Jacques, F. Delannay, and J. Ladrière, “On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels,” Metall. Mater. Trans. A 32, 2759–2768 (2001).

    Article  Google Scholar 

  8. B. Hu, H. Luo, F. Yang, and H. Dong, “Recent progress in medium-Mn steels made with new designing strategies, a review,” J. Mater. Sci. Technol. 33, 1457–1464 (2017).

    Article  CAS  Google Scholar 

  9. J. G. Speer, A. M. Streicher, M. David, R. Fernando, K. George, “Quenching and partitioning: A fundamentally new process to create high strength trip sheet microstructures,” Mater. Sci. Technol. 2003, 505–522 (2003).

    Google Scholar 

  10. J. Speer, D. K. Matlock, B. C. De Cooman, and J. G. Schroth, “Carbon partitioning into austenite after martensite transformation,” Acta Mater. 51, 2611–2622 (2003).

    Article  CAS  Google Scholar 

  11. E. D. Moor, J. G. Speer, D. K. Matlock, J. H. Kwak, and S. B. Lee, “Quenching and partitioning of CMnSi steels containing elevated manganese levels,” Steel Res. Int. 83, 322–327 (2012).

    Article  Google Scholar 

  12. Y. G. Yang, Z. L. Mi, M. Xu, Q. Xiu, J. Li, and H. T. Jiang, “Impact of intercritical annealing temperature and strain state on mechanical stability of retained austenite in medium Mn steel,” Mater. Sci. Eng., A 725, 389–397 (2018).

    Article  CAS  Google Scholar 

  13. D. O. Panov and A. I. Smirnov, “Features of austenite formation in low-carbon steel upon heating in the intercritical temperature range,” Phys. Met. Metallogr. 118, 1081–1090 (2017).

    Article  CAS  Google Scholar 

  14. I. L. Yakovleva, N. A. Tereshchenko, and N. V. Urtsev, “Observation of the martensitic-austenitic component in the structure of low-carbon low-alloy pipe steel,” Phys. Met. Metallogr. 121, 352–358 (2020).

    Article  CAS  Google Scholar 

  15. J. L. Guo, G. H. Wen, P. Tang, and J. J. Fu, “Analysis of Peritectic Transformation Contraction of 304 Stainless Steel Using Surface Roughness,” Mater. Sci. Forum. 1005, 10–17 (2020).

    Article  Google Scholar 

  16. C. Q. Liu, Q. C. Peng, Z. L. Xue, and C. W. Yang, “A novel cyclic-quenching-ART for stabilizing austenite in Nb–Mo micro-alloyed medium-Mn steel,” Metals 9, 1090 (2019).

    Article  Google Scholar 

  17. Z. Z. Zhao, J. H. Liang, A. M. Zhao, J. T. Liang, D. Tang, and Y. P. Gao, “Effects of the austenitizing temperature on the mechanical properties of cold-rolled medium-Mn steel system,” J. Alloy. Compd. 691, 51–59 (2017)

    Article  CAS  Google Scholar 

  18. M. J. Whelan, P. B. Hirschand, and R. W. Horne, “Dislocations and stacking faults in stainless steel,” Proc. R. Soc. A 7, 524–538 (1957).

    Google Scholar 

  19. A. N. Makovetsky, D. A. Mirzaev, L. I. Yusupova, A. O. Krasnotalov, A. A. Mirzoev, and S. A. Sozykin, “Mechanical Properties of Tube Steel after Full Hardening with Austenite Stabilization,” Phys. Met. Metallogr. 120, 976–980 (2019).

    Article  CAS  Google Scholar 

  20. S. O. Kruijver, L. Zhao, J. Sietsma, S. E. Offerman, N. H. van Dijk, E. M. Lauridsen, L. Margulies, S. Grigull, H. F. Poulsen, and S. van der Zwaag, “In situ observations on the mechanical stability of austenite in TRIP-steel,” J. Phys. IV 104, 499–502 (2003).

    CAS  Google Scholar 

  21. Z. Dai, Z. Yang, C. Zhang, and H. Chen, “Incomplete carbon partitioning during quenching and partitioning of Fe–C–Mn–Si steels: Modeling and experimental validations,” Acta Mater. 200, 597–607 (2020).

    Article  CAS  Google Scholar 

  22. H. Zhou, F. Kong, K. Wu, X. Wang, and Y. Chen, “Hot pack rolling nearly lamellar Ti–44Al–8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties,” Mater. Des. 121, 202–212 (2017).

    Article  CAS  Google Scholar 

  23. D. T. Pierce, D. R. Coughlin, K. D. Clarke, E. De Moor, J. Poplawsky, D. L. Williamson, B. Mazumder, J. G. Speer, A. Hood, and A. J. Clarke, “Microstructural evolution during quenching and partitioning of 0.2C–1.5Mn–1.3Si steels with Cr or Ni additions,” Acta Mater. 151, 454–469 (2018).

    Article  CAS  Google Scholar 

  24. T. Ma, H. Li, J. Gao, and Y. Li, “Diffusion Behavior of Cu in Carbon Steel and Its Influence on Corrosion Resistance of Carbon Steel,” Chin. J. Mater. Res. 33, 225–231 (2019).

    Google Scholar 

  25. K. Wei, R. Hu, D. Yin, L. Xiao, S. Pang, Y. Cao, H. Zhou, Y. Zhao, and Y. Zhu, “Grain size effect on tensile properties and slip systems of pure magnesium,” Acta Mater. 206, 116604 (2021).

    Article  CAS  Google Scholar 

  26. B. B. He, S. Pan, and M. X. Huang, “Extra work hardening in room-temperature quenching and partitioning medium Mn steel enabled by intercritical annealing,” Mater. Sci. Eng., A 797, 140106 (2020).

    Article  CAS  Google Scholar 

  27. N. Zhou, R. Song, X. Li, and J. Li, “Dependence of austenite stability and deformation behavior on tempering time in an ultrahigh strength medium Mn TRIP steel,” Mater. Sci. Eng., A 738, 153–162 (2018).

    Article  CAS  Google Scholar 

  28. J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, and W. Cao, “Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite,” Scr. Mater. 63, 815–818 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. N. Jing or T. Lin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Shan, B.R., Zhang, Z.H. et al. Effect of Cyclic Quenching on the Austenite Stability and Work Hardening Behavior of Medium-Mn Quenching and Partitioning Steel Enabled by Intercritical Annealing. Phys. Metals Metallogr. 123, 1451–1460 (2022). https://doi.org/10.1134/S0031918X2110104X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2110104X

Keywords:

Navigation