Skip to main content
Log in

Effect of plastic deformation on the structure and mechanical properties of an ultra-low carbon interstitial-free steel in the monolithic material and as a component of a sandwich composite

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The structure and mechanical properties of ultra-low carbon interstitial-free (IF) steel in the annealed state, after warm and cold rolling, and as a component of seven-layer steel–aluminum composite have been studied. A comparative analysis of the results of structural studies using optical microscopy and scanning and transmission electron microscopy have revealed the possibility of the formation of an ultrafinegrained structure in a steel layer during rolling at temperatures ranging from room temperature to 520°C. It has been found that the seven-layer composite has higher strength properties as compared to monolithic samples of the IF steel after analogous regime of the warm rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Chawla and K. N. Chawla, Metal Matrix Composites (Springer Science + Business Media, New York, 2013), 2nd ed.

    Book  Google Scholar 

  2. Yu. P. Trykov, V. G. Shmorgun, and L. M. Gurevich, Deformation of Layered Composites (Politekhnik, Volgograd, 2001) [in Russian].

    Google Scholar 

  3. A. A. Bataev and V. A. Bataev, Composite Materials (Logos, Moscow, 2006) [in Russian].

    Google Scholar 

  4. Yu. P. Trykov, L. M. Gurevich, and V. G. Shmorgunov, Layered Composites Based on Aluminum and Its Alloys (Metallurgizdat, Moscow, 2004) [in Russian].

    Google Scholar 

  5. T. I. Tabatchikova, A. I. Plokhikh, I. L. Yakovleva, and S. Yu. Klyueva, “Structure and properties of a steelbased multilayer material produced by hot pack rolling,” Phys. Met. Metallogr. 114, 580–592 (2013).

    Article  Google Scholar 

  6. I. A. Bataev, A. A. Bataev, V. I. Mali, V. G. Burov, and E. A. Prikhod’ko, “Formation and structure of vortex zones arising upon explosion welding of carbon steels,” Phys. Met. Metallogr. 113, 233–240 (2012).

    Article  Google Scholar 

  7. R. Yoda, K. Shibata, T. Morimitsu, D. Terada, N. Tsuji, “Formability of ultrafine-grained interstitial-free steel fabricated by accumulative roll-bonding and subsequent annealing,” Scr. Mater. 65, 175–178 (2011).

    Article  Google Scholar 

  8. A. I. Rudskoi, G. E. Kodzhespirov, and S. V. Dobatkin, “Advanced technologies for manufacturing sheet products with an ultrafine-grained structure,” Russ. Metall. (Engl. transl.) 2012, 72–75 (2012).

    Article  Google Scholar 

  9. Y. Saito, H. Utsunomiya, N. B. Tsuji, and T. Sakai, “Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process,” Acta Mater. 47, 579–583 (1999).

    Article  Google Scholar 

  10. A. L. M. Costa, A. C. C. Reis, L. Kestens, and M. S. Andrade, “Ultra grain refinement and handling of IF-steel during accumulative roll-bonding,” Mater. Sci. Eng., A 406, 279–285 (2005).

    Article  Google Scholar 

  11. S. Tamimi, M. Ketabchi, and N. Parvin, “Microstructural evolution and mechanical properties of accumulative roll bonded interstitial free steel,” Mater. Design 30, 2556–2562 (2009).

    Article  Google Scholar 

  12. Y. G. Ko, J. S. Lee, and J. S. Lorentz, “Microstructure evolution and mechanical properties of ultrafine grained IF steel via multipass differential speed rolling,” Mater. Sci. Tech. 29, 553–558 (2013).

    Article  Google Scholar 

  13. B. L. Li, N. Tsuji, and N. Kamikawa, “Microstructure homogeneity in various metallic materials heavily deformed by accumulative roll-bonding,” Mater. Sci. Eng., A 423, 331–342 (2006).

    Article  Google Scholar 

  14. A. G. Kolesnikov, A. I. Plokhikh, Y. S. Komisarchuk, and I. Yu. Mikhaltsevich, “A study of special features of formation of submicro-and nanosize structure in multilayer materials by the method of hot rolling,” Metal Sci. Heat Treat. 52, 273–278 (2010).

    Article  Google Scholar 

  15. Yu. P. Trykov, L. M. Gurevich, and V. G. Shmorgunov, Layered Composites Based on Aluminum and Its Alloys (Metallurgizdat, Moscow, 2004), [in Russian].

    Google Scholar 

  16. L. M. Gromova, Yu. F. Ivanov, E. V. Kozlov, and S. V. Konovalov, “Evolution of the dislocation substructure upon the drawing of wire from steels with a high degree of deformation,” Vopr. Materialoved., No. 4 (52), 169–173 (2007).

    Google Scholar 

  17. V. V. Rybin, Large Plastic Deformations and Fracture of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  18. S. V. Gladkovskii, T. A. Trunina, E. A. Kokovikhin, S. V. Smirnova, I. S. Kamancev, and A. B. Gorbunov, “Structural steel–aluminum sandwich composites based on low-carbon steel 006/IF,” Metal Sci. Heat Treat. 55, 3–7 (2013).

    Article  Google Scholar 

  19. S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (MISIS, Moscow, 2005), 3rd ed. [in Russian].

    Google Scholar 

  20. X. Huang, N. Tsuji, N. Hansen, and Y. Minamino, “Microstructural evolution during accumulative rollbondng commercial purity aluminum,” Mater. Sci. Eng. A 340, 265–271 (2003).

    Article  Google Scholar 

  21. N. Tsuji, Y. Saito, S. H. Lee, and Y. Minamino, “ARB and other new techniques to produce bulk ultrafine grained materials,” Adv. Eng. Mater. 5, 338–344 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gladkovsky.

Additional information

Original Russian Text © S.V. Gladkovsky, S.V. Kuteneva, I.S. Kamantsev, S.N. Sergeev, I.M. Safarov, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 10, pp. 1105–1112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladkovsky, S.V., Kuteneva, S.V., Kamantsev, I.S. et al. Effect of plastic deformation on the structure and mechanical properties of an ultra-low carbon interstitial-free steel in the monolithic material and as a component of a sandwich composite. Phys. Metals Metallogr. 117, 1070–1077 (2016). https://doi.org/10.1134/S0031918X16100069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16100069

Keywords

Navigation