Skip to main content
Log in

Singlet Oxygen Generation in Microcapillary Optical Elements with Photoactive Coatings

  • SPECTROSCOPY OF CONDENSED MATTER
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The spectral-luminescent properties of oxide nanocoatings containing ZnO and Ag nanoparticles and the processes of singlet-oxygen generation in these coatings are studied. A microchannel photoactive cell for water and air purification systems is developed based on the obtained experimental data. The developed microchannel photoactive cell is an optical element made of quartz glass with channels of given shape, size, and spatial position, which contain zinc and magnesium nanocrystals and silver nanoparticles. A high efficiency of singlet-oxygen generation by ZnO and ZnO–MgO–Ag films and microchannel cells under UV (370 nm) and violet light (405 nm) irradiation is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. Wang, C. Hu, and L. Shao, Int. J. Nanomed. 2, 1227 (2017).

    Article  Google Scholar 

  2. F. Vatansever, W. C. M. A. de Melo, P. Avci, D. Vecchio, M. Sadasivam, A. Gupta, R. Chandran, M. Karimi, N. A. Parizotto, R. Yin, G. P. Tegos, and M. R. Hamblinn, FEMS Microbiol. Rev. 37, 955 (2013).

    Article  Google Scholar 

  3. M. Rai, A. P. Ingle, S. Gaikwad, I. Gupta, A. Gade, and S. S. de Silva, J. Appl. Microbiol. 120, 527 (2015).

    Article  Google Scholar 

  4. U. I. Gaya and A. N. Abdullah, J. Photochem. Photobiol. C 9, 1 (2008).

    Article  Google Scholar 

  5. M. A. Johar, R. A. Afzal, A. A. Alazba, and U. Manzoor, Adv. Mater. Sci. Eng. 2015, 934587 (2015). https://doi.org/10.1155/2015/934587

    Article  Google Scholar 

  6. P. Fageria, S. Gangopadhyay, and S. Pande, RSC Adv. 4, 24962 (2014). https://doi.org/10.1039/c4ra03158j

  7. S. K. Evstropiev, A. V. Karavaeva, K. V. Dukelskii, V. M. Kiselev, K. S. Evstropyev, N. V. Nikonorov, and E. V. Kolobkova, Ceram. Int. 43, 14504 (2017).

    Article  Google Scholar 

  8. S. K. Evstropiev, K. V. Dukelskii, A. V. Karavaeva, V. N. Vasilyev, E. V. Kolobkova, N. V. Nikonorov, and K. S. Evstropyev, J. Mater. Sci.: Mater. Med. 28, 102 (2017). https://doi.org/10.1007/s10856-017-5909-4

    Article  Google Scholar 

  9. B. Thongrom, P. Amornpitoksuk, S. Suwanboon, and J. Baltusatis, Korean J. Chem. Eng. 31, 587 (2014).

    Article  Google Scholar 

  10. Z. Cheng, S. Zhao, and L. Han, Nanoscale 10, 6892 (2018).

    Article  Google Scholar 

  11. I. S. Boltenkov, E. V. Kolobkova, and S. K. Evstropiev, J. Photochem. Photobiol. A 367, 458 (2018).

    Article  Google Scholar 

  12. N. Padmavathy and R. Vijayaraghavan, Sci. Technol. Adv. Mater. 9, 035004 (2008). https://doi.org/10.1088/1468-6996/9/3/035004

    Article  Google Scholar 

  13. T. N. Ravishankar, K. Manjunatha, T. Ramakrishnappa, G. Nagaraju, D. Kumar, S. Sarakar, B. S. Anandakumar, G. T. Chandrappa, V. Reddy, and J. Dupont, Mater. Sci. Semicond. Proc. 26, 7 (2014).

    Article  Google Scholar 

  14. S. Pyne, G. P. Sahoo, D. K. Bhui, H. Bar, P. Sarkar, S. Samanta, A. Maity, and A. Misra, Spectrochim. Acta, Part A 93, 100 (2012).

    Article  ADS  Google Scholar 

  15. A. A. Krasnovsky, Jr. and R. V. Ambartzumian, Chem. Phys. Lett. 400, 531 (2004).

    Article  ADS  Google Scholar 

  16. D. Toshihiro and N. Yoshio, J. Phys. Chem. C 111, 4420 (2007).

    Article  Google Scholar 

  17. V. M. Kiselev, I. M. Kislyakov, and A. N. Burchinov, Opt. Spectrosc. 120, 520 (2016).

    Article  ADS  Google Scholar 

  18. B. Santiago-Gonzalez, A. Monguzzi, M. Caputo, C. Villa, M. Prato, C. Santambrogio, Y. Torrente, F. Meinardi, and S. Brovelli, Sci. Rep. 7, 5976 (2017).

  19. V. M. Kiselev, S. K. Evstropiev, and A. M. Starodubtsev, Opt. Spectrosc. 123, 809 (2017).

    Article  ADS  Google Scholar 

  20. I. V. Bagrov, I. M. Belousova, V. M. Kiselev, and I. M. Kislyakov, J. Opt. Technol. 68, 66 (2019).

    Article  Google Scholar 

  21. I. V. Bagrov, I. M. Belousova, A. S. Grenishin, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, Opt. Spectrosc. 112, 935 (2012).

    Article  ADS  Google Scholar 

  22. Y. T. Chung, M. M. Ba-Abbad, A. W. Mohammad, and A. Benamor, Desalin. Water Treatm. 57, 7801 (2016).

    Article  Google Scholar 

  23. J. H. Jhaveri and Z. V. P. Murthy, Desalin. Water Treatm. 57, 26803 (2016). https://doi.org/10.1080/19443994.2015.1120687

    Article  Google Scholar 

  24. H. Wang, X. Qiao, J. Chen, X. Wang, and S. Ding, Mater. Chem. Phys. 94, 449 (2005).

    Article  Google Scholar 

  25. K. Jia, P. Wang, L. Yuan, X. Zhou, W. Chen, and X. Liu, J. Mater. Chem. 3, 3522 (2015).

    Article  Google Scholar 

  26. C. Kan, W. Cai, C. Li, and L. Zhang, J. Mater. Res. 20, 320 (2005).

    Article  ADS  Google Scholar 

  27. V. V. Demidov, K. V. Dukel’skii, and V. S. Shevandin, J. Opt. Technol. 77, 394 (2010).

    Article  Google Scholar 

  28. J. Mack and J. R. Bolton, J. Photochem. Photobiol. A 128, 1 (1999).

    Article  Google Scholar 

  29. N. A. Volkova, S. K. Evstropiev, O. V. Istomina, and E. V. Kolobkova, Opt. Spectrosc. 124, 489 (2018).

    Article  ADS  Google Scholar 

  30. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 373.

    Google Scholar 

  31. X.-F. Zhang, Z.-G. Liu, W. Shen, and S. Gurunathan, Int. J. Mol. Sci. 17, 1534 (2016). https://doi.org/10.3390/ijms17091534

    Article  Google Scholar 

  32. R. He, X. Qian, J. Yin, and Z. Zhu, J. Mater. Chem., No. 12, 3783 (2002). https://doi.org/10.1039/B205214H

  33. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003). https://doi.org/10.1021/jp026731y

    Article  Google Scholar 

  34. D. Paramelle, A. Sadavoy, S. Gorelik, P. Free, J. Hobley, and D. G. Fernig, Analyst 139, 4855 (2014). https://doi.org/10.1039/C4AN00978A

    Article  ADS  Google Scholar 

  35. T. Huang and X.-H. N. Xu, J. Mater. Chem. 20, 9867 (2010).

    Article  Google Scholar 

  36. S. Talam, S. R. Karumuri, and N. Gunnam, ISRN Nanotechnol. 2012, 372505 (2012). https://doi.org/10.5402/2012/372505

    Article  Google Scholar 

  37. S. K. Evstropiev, V. N. Vasilyev, N. V. Nikonorov, E. V. Kolobkova, N. A. Volkova, and I. A. Boltenkov, Chem. Eng. Process. 134, 45 (2018). https://doi.org/10.1016/j.cep.2018.10.020

    Article  Google Scholar 

  38. A. S. Shaporev, A. S. Vanetsev, D. P. Kiryukhin, M. N. Sokolov, and V. M. Buznik, Kondens. Sredy Mezhfaz. Granitsy 13, 374 (2011).

    Google Scholar 

  39. A. Zhang, J. Zhang, and Y. Fang, J. Lumin. 128, 1635 (2008).

    Article  Google Scholar 

  40. E. J. Guidelli, O. Baffa, and D. R. Clarke, Sci. Rep. 5, 14004 (2015).

    Article  ADS  Google Scholar 

  41. D. Basak, S. Karan, and B. Mallik, Chem. Phys. Lett. 420, 115 (2006).

    Article  ADS  Google Scholar 

  42. C. Wan, J. Tai, J. Zhang, Y. Guo, Q. Zhu, D. Ling, F. Gu, C. Zhu, Y. Wang, S. Liu, F. Wei, and Q. Cai, Cell Death Disease 10, 392 (2019).

    Article  Google Scholar 

  43. V. M. Kiselev and I. V. Bagrov, Opt. Spectrosc. 123, 543 (2017).

    Google Scholar 

  44. M. K. Nissen, S. M. Wilson, and M. L. W. Thewalt, Phys. Rev. Lett. 69, 2423 (1992).

    Article  ADS  Google Scholar 

  45. B. F. Minaev, Russ. Chem. Rev. 76, 989 (2007).

    Article  Google Scholar 

  46. J. Wang, J. Leng, H. Yang, G. Sha, and C. Zhang, Langmuir 29, 9051 (2013).

    Article  Google Scholar 

  47. B. Minaev, Chem. Chem. Technol. 10, 519 (2016).

    Article  Google Scholar 

  48. M. Bregnhoj, M. Westberg, B. F. Minaev, and P. R. Ogilby, Acc. Chem. Res. 50, 1920 (2017).

    Article  Google Scholar 

  49. S. V. Mel’nichuk, V. I. Sokolov, T. P. Surkova, and V. M. Chernov, Sov. Phys. Solid State 33, 1833 (1991).

    Google Scholar 

  50. M. Silambarasan, S. Saravanan, and T. Soga, Int. J. Chem. Tech. Res. 7, 1644 (2014–2015).

    Google Scholar 

  51. R. A. Assink, J. E. Schirber, D. A. Loy, B. Morosin, and G. A. Carlson, J. Mater. Res. 7, 2136 (1992).

    Article  ADS  Google Scholar 

Download references

Funding

This work was partially (S.K. Evstropiev, V.V. Demidov, A.S. Matrosova) supported by the Russian Science Foundation, project no. 19-19-00596.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Evstropiev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagrov, I.V., Kiselev, V.M., Evstropiev, S.K. et al. Singlet Oxygen Generation in Microcapillary Optical Elements with Photoactive Coatings. Opt. Spectrosc. 128, 214–219 (2020). https://doi.org/10.1134/S0030400X20020034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20020034

Keywords:

Navigation