Skip to main content
Log in

The Structure, Expression, and Non-Canonical Functions of Human rDNA: The Role of Non-Coding Regions

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The genes coding for the rRNAs seem evolutionary conserved on the first glance, but astonish one with their variability in the structure and a variety of functions on closer examination. The non-coding parts of rDNA contain regulatory elements, protein binding sites, pseudogenes, repetitive sequences, and microRNA genes. Ribosomal intergenic spacers are not only in charge with the nucleolus morphology and functioning, namely, the rRNA expression and ribosome biogenesis, but also control nuclear chromatin formation thus mediating cell differentiation. The alterations in the expression of these non-coding regions of rDNA in response to environmental stimuli underlie the keen sense of a cell to various types of stressors. Malfunctioning of this process may result in a wide range of pathologies from oncology to neurodegenerative disease and mental illness. Here, we observe to-date materials on the structure and transcription of the ribosomal intergenic spacer in humans and its role in rRNA expression, in-born disease development, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. McStay B. 2016. Nucleolar organizer regions: genomic ‘dark matter’ requiring illumination. Genes Dev. 30 (14), 1598–1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paredes S., Maggert K. 2009. Ribosomal DNA contributes to global chromatin regulation. Proc. Natl. Acad. Sci. U. S. A. 106 (42), 17829–17834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stępiński D. 2018. The nucleolus, an ally, and an enemy of cancer cells. Histochem. Cell Biol. 150 (6), 607–629.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rajesh Y., Pal I., Banik P., Chakraborty S., Borkar S., Dey G., Mukherjee A., Mandal M. 2017. Insights into molecular therapy of glioma: current challenges and next generation blueprint. Acta Pharmacol. Sinica. 38 (5), 591–613.

    Article  CAS  Google Scholar 

  5. Moore L., Kivinen V., Liu Y., Annala M., Cogdell D., Liu X., Liu C., Sawaya R., Yli-Harja O., Shmulevich I., Fuller G.N., Zhang W., Nykter M. 2013. Transcriptome and small RNA deep sequencing reveals deregulation of miRNA biogenesis in human glioma. J. Pathol. 229 (3), 449–459.

    Article  CAS  PubMed  Google Scholar 

  6. Brower J., Clark P., Lyon W., Kuo J. 2014. MicroRNAs in cancer: glioblastoma and glioblastoma cancer stem cells. Neurochem. Int. 77, 68–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hosgood H., Hu W., Rothman N., Klugman M., Weinstein S., Virtamo J., Albanes D., Cawthon R., Lan Q. 2019. Variation in ribosomal DNA copy number is associated with lung cancer risk in a prospective cohort study. Carcinogenesis. 40 (8), 975–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Santoro R., Grummt I. 2005. Epigenetic mechanism of rRNA gene silencing: temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation. Mol. Cell. Biol. 25 (7), 2539–2546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Savić N., Bär D., Leone S., Frommel S., Weber F., Vollenweider E., Ferrari E., Ziegler U., Kaech A., Shakhova O., Cinelli P., Santoro R. 2014. LncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in eSCS. Cell Stem Cell. 15 (6), 720–734.

    Article  PubMed  Google Scholar 

  10. McConkey E., Hopkins J. 1964. The relationship of the nucleolus to the synthesis of ribosomal RNA in HeLa cells. Proc. Natl. Acad. Sci. U. S. A. 51 (6), 1197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwarzacher H., Wachtler F. 1993. The nucleolus. Anat. Embryol. 188 (6), 515–536.

    Article  CAS  Google Scholar 

  12. Gonzalez I., Sylvester J. 1995. Complete sequence of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer. Genomics. 27 (2), 320–328.

    Article  CAS  PubMed  Google Scholar 

  13. Gibbons J., Branco A., Godinho S., Yu S., Lemos B. 2015. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc. Natl. Acad. Sci. U. S. A. 112 (8), 2485–2490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hall A., Turner T., Queitsch C. 2021. Thousands of high-quality sequencing samples fail to show meaningful correlation between 5S and 45S ribosomal DNA arrays in humans. Sci. Rep. 11 (1), 449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang M., Lemos B. 2017. Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation. PLoS Genet. 13 (9), e1006994.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Smirnov E., Chmúrčiaková N., Liška F., Bažantová P., Cmarko D. 2021. Variability of human rDNA. Cells. 10 (2), 196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Erickson J., Schmickel R. 1985. A molecular basis for discrete size variation in human ribosomal DNA. Am. J. Hum. Genet. 37 (2), 311–325.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Akamatsu Y., Kobayashi T. 2015. The human RNA polymerase I transcription terminator complex acts as a replication fork barrier that coordinates the progress of replication with rRNA transcription activity. Mol. Cell. Biol. 35 (10), 1871–1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jacob M., Audas T., Mullineux S., Lee S. 2012. Where no RNA polymerase has gone before: novel functional transcripts derived from the ribosomal intergenic spacer. Nucleus. 3 (4), 315‒319.

    Article  PubMed  Google Scholar 

  20. Guetg C., Santoro R. 2012. Formation of nuclear heterochromatin: the nucleolar point of view. Epigenetics. 7 (8), 811–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Koningsbruggen S., Gierlinski M., Schofield P., Martin D., Barton G., Ariyurek Y., den Dunnen J., Lamond A. 2010. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell. 21 (21), 3735–3748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Németh A., Conesa A., Santoyo-Lopez J., Medina I., Montaner D., Péterfia B., Solovei I., Cremer T., Dopazo J., Längst G. 2010. Initial genomics of the human nucleolus. PLoS Genet. 6 (3), e1000889.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yu S., Lemos B. 2018. The long-range interaction map of ribosomal DNA arrays. PLoS Genet. 14 (3), e1007258.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Strohner R., Nemeth A., Jansa P., Hofmann-Rohrer U., Santoro R., Längst G., Grummt I. 2001. NoRC—a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J. 20 (17), 4892–4900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guetg C., Lienemann P., Sirri V., Grummt I., Hernandez-Verdun D., Hottiger M., Fussenegger M., Santoro R. 2010. The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J. 29 (13), 2135–2146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Postepska-Igielska A., Krunic D., Schmitt N., Greulich-Bode K., Boukamp P., Grummt I. 2013. The chromatin remodelling complex NoRC safeguards genome stability by heterochromatin formation at telomeres and centromeres. EMBO Rep. 14 (8), 704–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guetg C., Scheifele F., Rosenthal F., Hottiger M., Santoro R. 2012. Inheritance of silent rDNA chromatin is mediated by PARP1 via noncoding RNA. Mol. Cell. 45 (6), 790–800.

    Article  CAS  PubMed  Google Scholar 

  28. Krishnakumar R., Kraus W. 2010. PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol. Cell. 39 (5), 736–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roper S., Chrysanthou, S., Senner C., Sienerth A., Gnan S., Murray A., Masutani M., Latos P., Hemberger M. 2014. ADP-ribosyltransferases Parp1 and Parp7 safeguard pluripotency of ES cells. Nucleic Acids Res. 42 (14), 8914–8927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schreiber V., Dantzer F., Amé J.C., de Murcia G. 2006. Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. 7 (7), 517–528.

    Article  CAS  Google Scholar 

  31. Nalabothula N., Al-jumaily T., Eteleeb A., Flight R., Xiaorong S., Moseley H., Rouchka E., Fondufe-Mittendorf Y. 2015. Genome-wide profiling of PARP1 reveals an interplay with gene regulatory regions and DNA methylation. PLoS One. 10 (8), e0135410.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mansuroglu Z., Benhelli-Mokrani H., Marcato V., Sultan A., Violet M., Chauderlier A., Delattre L., Loyens A., Talahari S., Bégard S., Nesslany F., Colin M., Souès S., Lefebvre B., Buée L., Galas M.C., Bonnefoy E. 2016. Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin. Sci. Rep. 6, 33047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maina M., Bailey L., Wagih S., Biasetti L., Pollack S., Quinn J., Thorpe J., Doherty A., Serpell L. 2018. The involvement of Tau in nucleolar transcription and the stress response. Acta Neuropathol. Commun. 6 (1), 70.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kuhn A., Grummt I. 1992. Dual role of the nucleolar transcription factor UBF: trans-activator and antirepressor. Proc. Natl. Acad. Sci. U. S. A. 89 (16), 7340–7344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanij E., Poortinga G., Sharkey K., Hung S., Holloway T., Quin J., Robb E., Wong L., Thomas W., Stefanovsky V., Moss T., Rothblum L., Hannan K.M., McArthur G.A., Pearson R.B., Hannan R.D. 2008. UBF levels determine the number of active ribosomal RNA genes in mammals. J. Cell. Biol. 183 (7), 1259–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hannan K., Hannan R., Rothblum L. 1998. Transcription by RNA polymerase I. Front. Biosci. 3, d376–d398.

    Article  CAS  PubMed  Google Scholar 

  37. Grummt I. 1999. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Prog. Nucleic Acids Res. Mol. Biol. 62, 109–154.

    Article  CAS  Google Scholar 

  38. Grummt I. 2010. Wisely chosen paths—regulation of rRNA synthesis. FEBS J. 277 (22), 4626–4639.

    Article  CAS  PubMed  Google Scholar 

  39. Tanaka Y., Tsuneoka M. 2018. Control of ribosomal RNA transcription by nutrients. In: Gene Expression and Regulation in Mammalian Cells—Transcription toward the Establishment of Novel Therapeutics. Uchiumi F., Ed. London: IntechOpen. Ch. 2.

    Google Scholar 

  40. Matthews D., Olson M. 2006. What is new in the nucleolus?: Workshop on the nucleolus: new perspectives. EMBO Rep. 7 (9), 870–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao Z., Senturk N., Song C., Grummt I. 2018. l-ncRNA PAPAS tethered to the rDNA enhancer recruits hypophosphorylated CHD4/NuRD to repress rRNA synthesis at elevated temperatures. Genes Dev. 32 (11–12), 836–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grummt I., Ladurner A. 2008. A metabolic throttle regulates the epigenetic state of rDNA. Cell. 133 (4), 577–580.

    Article  CAS  PubMed  Google Scholar 

  43. Zentner G., Saiakhova A., Manaenkov P., Adams M., Scacheri P. 2011. Integrative genomic analysis of human ribosomal DNA. Nucleic Acids Res. 39 (12), 4949–4960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Srivastava R., Srivastava R., Ahn S. 2016. The epigenetic pathways to ribosomal DNA silencing. Microbiol. Mol. Biol. Rev. 80 (3), 545–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li J., Längst G., Grummt I. 2006. NoRC-dependent nucleosome positioning silences rRNA genes. EMBO J. 25 (24), 5735–5741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li J., Santoro R., Koberna K., Grummt I. 2005. The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J. 24 (1), 120–127.

    Article  PubMed  Google Scholar 

  47. Wang M., Lemos B. 2019. Ribosomal DNA harbors an evolutionarily conserved clock of biological aging. Genome Res. 29 (3), 325–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Németh A., Guibert S., Tiwari V., Ohlsson R., Längst G. 2008. Epigenetic regulation of TTF-I-mediated promoter–terminator interactions of rRNA genes. EMBO J. 27 (8), 1255–1265.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xie W., Ling T., Zhou Y., Feng W., Zhu Q., Stunnenberg H., Grummt I., Tao W. 2012. The chromatin remodeling complex NuRD establishes the poised state of rRNA genes characterized by bivalent histone modifications and altered nucleosome positions. Proc. Natl. Acad. Sci. U. S. A. 109 (21), 8161–8166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yuan X., Feng W., Imhof A., Grummt I., Zhou Y. 2007. Activation of RNA polymerase I transcription by cockayne syndrome group B protein and histone methyltransferase G9a. Mol. Cell. 27 (4), 585–595.

    Article  CAS  PubMed  Google Scholar 

  51. Salifou K., Ray S., Verrier L., Aguirrebengoa M., Trouche D., Panov K., Vandromme M. 2016. The histone demethylase JMJD2A/KDM4A links ribosomal RNA transcription to nutrients and growth factors availability. Nat. Commun. 7, 10174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murayama A., Ohmori K., Fujimura A., Minami H., Yasuzawa-Tanaka K., Kuroda T., Oie S., Daitoku H., Okuwaki M., Nagata K., Fukamizu A., Kimura K., Shimizu T., Yanagisawa J. 2008. Epigenetic control of rDNA loci in response to intracellular energy status. Cell. 133 (4), 627–639.

    Article  CAS  PubMed  Google Scholar 

  53. Kumazawa T., Nishimura K., Kuroda T., Ono W., Yamaguchi C., Katagiri N., Tsuchiya M., Masumoto H., Nakajima Y., Murayama A., Kimura K., Yanagisawa J. 2011. Novel nucleolar pathway connecting intracellular energy status with p53 activation. J. Biol. Chem. 286 (23), 20861–20869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yan Q., Zhu C., Guang S., Feng X. 2019. The functions of non-coding RNAs in rRNA regulation. Front. Genet. 10, 290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jacob M., Audas T., Uniacke J., Trinkle-Mulcahy L., Lee S. 2013. Environmental cues induce a long noncoding RNA-dependent remodeling of the nucleolus. Mol. Biol. Cell. 24 (18), 2943–2953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bierhoff H., Schmitz K., Maass F., Ye J., Grummt I. 2010. Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes. Cold Spring Harb. Symp. Quant. Biol. 75, 357–364.

    Article  CAS  PubMed  Google Scholar 

  57. Schmitz K., Mayer C., Postepska A., Grummt I. 2010. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 24 (20), 2264–2269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mayer C., Neubert M., Grummt I. 2008. The structure of NoRC-associated RNA is crucial for targeting the chromatin remodelling complex NoRC to the nucleolus. EMBO Rep. 9 (8), 774–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bierhoff H., Dammert M., Brocks D., Dambacher S., Schotta G., Grummt I. 2014. Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol. Cell. 54 (4), 675–682.

    Article  CAS  PubMed  Google Scholar 

  60. Li D., Zhang J., Wang M., Li X., Gong H., Tang H., Chen L., Wan L., Liu Q. 2018. Activity dependent LoNA regulates translation by coordinating rRNA transcription and methylation. Nat. Commun. 9 (1), 1726–1739.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Caudron-Herger M., Pankert T., Seiler J., Németh A., Voit R., Grummt I., Rippe K. 2015. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J. 34 (22), 2758–2774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xing Y., Yao R., Zhang Y., Guo C., Jiang S., Xu G., Dong R., Yang L., Chen L. 2017. SLERT regulates DDX21 rings associated with Pol I transcription. Cell. 169 (4), 664–678.

    Article  CAS  PubMed  Google Scholar 

  63. Morgan G., Reeder R., Bakken A. 1983. Transcription in cloned spacers of Xenopus laevis ribosomal DNA. Proc. Natl. Acad. Sci. U. S. A. 80 (21), 6490–6494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kuhn A., Grummt I. 1987. A novel promoter in the mouse rDNA spacer is active in vivo and in vitro. EMBO J. 6 (11), 3487–3492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Agrawa S., Ganley A. 2018. The conservation landscape of the human ribosomal RNA gene repeats. PLoS One. 13 (12), e0207531.

    Article  Google Scholar 

  66. Li Y., Wang H., Wan F., Liu F., Liu J., Zhang N., Jin S., Li J. 2012. Deep sequencing analysis of small non-coding RNAs reveals the diversity of microRNAs and piRNAs in the human epididymis. Gene. 497 (2), 330–335.

    Article  CAS  PubMed  Google Scholar 

  67. Ma X., Liu H., Zheng Y., Dai Y., Lingling E., Zhang R., Zhang S. 2022. Genome-wide screening of different expressed genes and its potential associations with aging dental pulp stem cells. Comb. Chem. High Throughput Screen. https://doi.org/10.2174/1386207325666220705120904

  68. Pirogov S., Gvozdev V., Klenov M. 2019. Long noncoding RNAs and stress response in the nucleolus. Cells. 8 (7), 668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mayer C., Schmitz K., Li J., Grummt I., Santoro R. 2006. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol. Cell. 22 (3), 351–361.

    Article  CAS  PubMed  Google Scholar 

  70. McStay B., Grummt I. 2008. The epigenetics of rRNA genes: from molecular to chromosome biology. Annu. Rev. Cell Dev. Biol. 24, 131–157.

    Article  CAS  PubMed  Google Scholar 

  71. Mars J.C., Sabourin-Felix M., Tremblay M., Moss T. 2017. A deconvolution protocol for ChIP-seq reveals analogous enhancer structures on the mouse and human ribosomal RNA genes. G3. 8 (1), 303–314.

    Article  PubMed Central  Google Scholar 

  72. Shiao Y., Lupascu S., Gu Y., Kasprzak W., Hwang C., Fields J., Leighty R., Quiñones O., Shapiro B., Alvord W., Anderson L. 2009. An intergenic non-coding RNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells. PLoS One. 4 (10), e7505.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vacík T., Kereïche S., Raška I., Cmarko D., Smirnov E. 2019. Life time of some RNA products of rDNA intergenic spacer in HeLa cells. Histochem. Cell. Biol. 152 (4), 271–280.

    Article  PubMed  Google Scholar 

  74. Todd M., Huh M., Picketts D. 2016. The sub-nucleolar localization of PHF6 defines its role in rDNA transcription and early processing events. Eur. J. Hum. Genet. 24 (10), 1453–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sadova A., Kupriyanova N., Pavlova G. 2020. Mapping and quantification of non-coding RNA originating from the rDNA in human glioma cells. Cancers. 12 (8), 2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sadova A., Panteleev D., Pavlova G. 2021. Zooming in: PAGE-northern blot helps to analyze anti-sense transcripts originating from human rIGS under transcriptional stress. Noncoding RNA. 7 (3), 50.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Abraham K., Khosraviani N., Chan J., Gorthi A., Samman A., Zhao D.Y., Wang M., Bokros M., Vidya E., Ostrowski L.A., Oshidari R., Pietrobon V., Patel P.S., Algouneh A., Singhania R., Liu Y., Yerlici V.T., De Carvalho D.D., Ohh M., Dickson B.C., Hakem R., Greenblatt J.F., Lee S., Bishop A.J.R., Mekhail K. 2020. Nucleolar RNA polymerase II drives ribosome biogenesis. Nature. 585 (7824), 298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Warmerdam D., Wolthuis R. 2019. Keeping ribosomal DNA intact: a repeating challenge. Chromosome Res. 27 (1–2), 57–72.

    Article  CAS  PubMed  Google Scholar 

  79. Machwe A., Orren D.K., Bohr V.A. 2000. Accelerated methylation of ribosomal RNA genes during the cellular senescence of Werner syndrome fibroblasts. FASEB J. 14 (12), 1715–1724.

    Article  CAS  PubMed  Google Scholar 

  80. Zeng J., Libien J., Shaik F., Wolk J., Hernández A. 2016. Nucleolar PARP-1 expression is decreased in Alzheimer’s disease: consequences for epigenetic regulation of rDNA and cognition. Neural Plasticity. 2016, 8987928.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pietrzak M., Rempala G., Nelson P., Zheng J., Hetman M. 2011. Epigenetic silencing of nucleolar rRNA genes in Alzheimer’s disease. PLoS One. 6 (7), e22585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Teschler S., Gotthardt J., Dammann G., Dammann R. 2016. Aberrant DNA methylation of rDNA and PRIM-A1 in borderline personality disorder. Int. J. Mol. Sci. 17 (1), E67.

    Article  Google Scholar 

  83. McGowan P., Sasaki A., Huang T., Unterberger A., Suderman M., Ernst C., Meaney M., Turecki G., Szyf M. 2008. Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLoS One. 3 (5), e2085.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hallgren J., Pietrzak M., Rempala G., Nelson P., Hetman M. 2014. Neurodegeneration-associated instability of ribosomal DNA. Biochim. Biophys. Acta. 1842 (6), 860–868.

  85. Dastidar S., Nair D. 2022. A ribosomal perspective on neuronal local protein synthesis. Front. Mol. Neurosci. 15, 823135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Allen K., Regier M., Hsieh C., Tsokas P., Barnard M., Phatarpekar S., Wolk J., Sacktor T., Fenton A., Hernández A. 2018. Learning-induced ribosomal RNA is required for memory consolidation in mice—evidence of differentially expressed rRNA variants in learning and memory. PLoS One. 13 (10), e020337.

    Article  Google Scholar 

  87. Allen K., Gourov A., Harte C., Gao P., Lee C., Sylvain D., Splett J., Oxberry W., van de Nes P., Troy-Regier M., Wolk J., Alarcon J.M., Hernández A.I. 2014. Nucleolar integrity is required for the maintenance of long-term synaptic plasticity. PLoS One. 9 (8), e104364.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lyapunova N., Porokhovnik L., Kosyakova N., Mandron I., Tsvetkova T. 2017. Effects of the copy number of ribosomal genes (genes for rRNA) on viability of subjects with chromosomal abnormalities. Gene. 611, 47–53.

    Article  CAS  PubMed  Google Scholar 

  89. Ravaioli F., Zampieri M., Morandi L., Pirazzini C., Pellegrini C., De Fanti S., Gensous N., Pirazzoli G., Sambati L., Ghezzo A., Ciccarone F., Reale A., Monti D., Salvioli S., Caiafa P., Capri M., Bürkle A., Moreno-Villanueva M., Garagnani P., Franceschi C., Bacalini M.G. 2022. DNA methylation analysis of ribosomal DNA in adults with Down syndrome. Front. Genet. 13, 792165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chestkov I.V., Jestkova E.M., Ershova E.S., Golimbet V.E., Lezheiko T.V., Kolesina N.Y., Porokhovnik L.N., Lyapunova N.A., Izhevskaya V.L., Kutsev S.I., Veiko N.N., Kostyuk S.V. 2018. Abundance of ribosomal RNA gene copies in the genomes of schizophrenia patients. Schizophr. Res. 197, 305–314.

    Article  CAS  PubMed  Google Scholar 

  91. Ershova E.S., Malinovskaya E.M., Golimbet V.E., Lezheiko T.V., Zakharova N.V., Shmarina G.V., Veiko R.V., Umriukhin P.E., Kostyuk G.P., Kutsev S.I., Izhevskaya V.L., Veiko N.N., Kostyuk S.V. 2020. Copy number variations of satellite III (1q12) and ribosomal repeats in health and schizophrenia. Schizophr. Res. 223, 199–212.

    Article  CAS  PubMed  Google Scholar 

  92. Umriukhin P., Ershova E., Filev A., Agafonova O., Martynov A., Zakharova N., Veiko R., Porokhovnik L., Kostyuk G., Kutsev S., Veiko N., Kostyuk S. 2022. The psychoemotional stress-induced changes in the abundance of SatIII (1q12) and telomere repeats, but not ribosomal DNA, in human leukocytes. Genes (Basel). 13 (2), 343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kondratyeva E.I., Ershova E.S., Voronkova A.Yu., Shmarina G.V., Krasovsky S.A., Zhekaite E.K., Petrova N.V., Melyanovskaya Yu.L., Odinaeva N.D., Veiko N.N., Kostyuk S.V. 2021. Variation in the number of copies of ribosomal genes in the genomes of patients with cystic fibrosis. Med. Genet. 20 (2), 49–60.

    Google Scholar 

  94. Veiko N., Shubaeva N., Tsvetkova T., Mandron I., Malinovskaya T., Speransky A., Lyapunova N. 2005. Quantitative characteristics of ribosomal gene complex in patients with severe forms of rheumatoid arthritis. Med. Genetics. 4 (4), 74.

    Google Scholar 

  95. Zamanpoor M., Ghaedi H., Omrani M. 2020. The genetic basis for the inverse relationship between rheumatoid arthritis and schizophrenia. Mol. Genet. Genom. Med. 8 (11), e1483.

    CAS  Google Scholar 

  96. Porokhovnik L., Lyapunova N. 2019. Dosage effects of human ribosomal genes (rDNA) in health and disease. Chromosome Res.: Int. J. Mol., Supramol. Evol. Aspects Chromosome Biol. 27 (1–2), 5–17.

    Article  CAS  Google Scholar 

  97. Malinovskaya E., Ershova E., Golimbet V., Porokhovnik L., Lyapunova N., Kutsev S., Veiko N., Kostyuk S. 2018. Copy number of human ribosomal genes with aging: unchanged. Front. Genet. 9, 306.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Veiko N., Ershova E., Veiko R., Umriukhin P., Kurmyshev M., Kostyuk G., Kutsev S., Kostyuk S. 2022. Mild cognitive impairment is associated with low copy number of ribosomal genes in the genomes of elderly people. Front. Genet. 13, 967448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Holdt L., Stahringer A., Sass K., Pichler G., Kulak N., Wilfert W., Kohlmaier A., Herbst A., Northoff B., Nicolaou A., Gäbel G., Beutner F., Scholz M., Thiery J., Musunuru K., Krohn K., Mann M., Teupser D. 2016. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun. 7, 12429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Narla A., Ebert B. 2010. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 115 (16), 3196–3205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mills E., Green R. 2017. Ribosomopathies: there’s strength in numbers. Science. 358 (6363), eaan2755.

  102. Calo E., Gu B., Bowen M., Aryan F., Zalc A., Liang J., Flynn R., Swigut T., Chang H., Attardi L., Wysocka J. 2018. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders. Nature. 554 (7690), 112–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Von Walden F., Gantelius S., Liu C., Borgström H., Björk L., Gremark O., Stål P., Nader G., Ponté N. 2018. Muscle contractures in patients with cerebral palsy and acquired brain injury are associated with extracellular matrix expansion, pro-inflammatory gene expression, and reduced rRNA synthesis. Muscle Nerve. 58 (2), 277–285.

    Article  CAS  PubMed  Google Scholar 

  104. Hwang Y., Han D., Kim K., Min S., Kowall N., Yang L., Lee J., Kim Y., Ryu H. 2014. ESET methylates UBF at K232/254 and regulates nucleolar heterochromatin plasticity and rDNA transcription. Nucleic Acids Res. 42 (3), 1628–1643.

    Article  CAS  PubMed  Google Scholar 

  105. Xie Q., Li C., Song X., Wu L., Jiang Q., Qiu Z., Cao H., Yu K., Wan C., Li J., Yang F., Huang Z., Niu B., Jiang Z., Zhang T. 2017. Folate deficiency facilitates recruitment of upstream binding factor to hot spots of DNA double-strand breaks of rRNA genes and promotes its transcription. Nucleic Acids Res. 45 (5), 2472–2489.

    Article  CAS  PubMed  Google Scholar 

  106. Hetman M., Slomnicki L. 2019. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J. Neurochem. 148 (3), 325–347.

    Article  CAS  PubMed  Google Scholar 

  107. Smirnov E., Chmúrčiaková N., Cmarko D. 2021. Human rDNA and cancer. Cells. 10 (12), 3452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Valori V., Tus K., Laukaitis C., Harris D., LeBeau L., Maggert K. 2019. Human rDNA copy number is unstable in metastatic breast cancers. Epigenetics. 15 (1–2), 85–106.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Xu B., Li H., Perry J., Singh V., Unruh J., Yu Z., Zakari M., McDowell W., Li L., Gerton J. 2017. Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet. 13 (6), e1006771.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Baskaran S., Mayrhofer M., Kultima H., Bergström T., Elfineh L., Cavelier L., Isaksson A., Nelander S. 2018. Primary glioblastoma cells for precision medicine: a quantitative portrait of genomic (in)stability during the first 30 passages. Neuro-Oncol. 20 (8), 1080–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Belin S., Beghin A., Solano-Gonzàlez E., Bezin L., Brunet-Manquat S., Textoris J., Prats A., Mertani H., Dumontet C., Diaz J. 2009. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One. 4 (9), e7147.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rajput P., Shukla S., Kumar V. 2015. The HBx oncoprotein of hepatitis B virus potentiates cell transformation by inducing c-Myc-dependent expression of the RNA polymerase I transcription factor UBF. Virol. J. 12, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Grandori C., Gomez-Roman N., Felton-Edkins Z., Ngouenet C., Galloway D., Eisenman R., White R. 2005. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat. Cell. Biol. 7 (3), 311–318.

    Article  CAS  PubMed  Google Scholar 

  114. Hannan K., Hannan R., Smith S., Jefferson L., Lun M., Rothblum L. 2000. Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1. Oncogene. 19 (43), 4988–4999.

    Article  CAS  PubMed  Google Scholar 

  115. Frescas D., Guardavaccaro D., Bassermann F., Koyama-Nasu R., Pagano M. 2007. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature. 450 (7167), 309–313.

    Article  CAS  PubMed  Google Scholar 

  116. Lozzio C., Lozzio B. 1975. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 45 (3), 321–334.

    Article  CAS  PubMed  Google Scholar 

  117. Foltankova V., Legartova S., Kozubek S., Bartova E. 2012. Tumor-specific histone signature and DNA methylation in multiple myeloma and leukemia cells. Neoplasma. 59 (4), 450–462.

    Article  CAS  PubMed  Google Scholar 

  118. Giard D., Aaronson S., Todaro G., Arnstein P., Kersey J., Dosik H., Parks W. 1973. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 51 (5), 1417–1423.

    Article  CAS  PubMed  Google Scholar 

  119. Soule H., Vazguez J., Long A., Albert S., Brennan M. 1973. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 51 (5), 1409–1416.

    Article  CAS  PubMed  Google Scholar 

  120. Lee A., Oesterreich S., Davidson N. 2015. MCF-7 cells—changing the course of breast cancer research and care for 45 years. J. Natl. Cancer Inst. 107 (7), djv073.

    Article  PubMed  Google Scholar 

  121. Johnston R., D’Costa Z., Ray S., Gorski J., Harkin D., Mullan P., Panov K. 2016. The identification of a novel role for BRCA1 in regulating RNA polymerase I transcription. Oncotarget. 7 (42), 68097–68110.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kaighn M., Narayan K., Ohnuki Y., Lechner J., Jones L. 1979. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol. 17 (1), 16–23.

    CAS  PubMed  Google Scholar 

  123. Zhang D., Park D., Zhong Y., Lu Y., Rycaj K., Gong S., Chen X., Liu X., Chao H., Whitney P., Calhoun-Davis T., Takata Y., Shen J., Iyer V.R., Tang, D.G. 2016. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nat. Commun. 7, 10798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yan Y., Chen Z., Xiao Y., Wang X., Qian K. 2019. Long non-coding RNA SNHG6 is upregulated in prostate cancer and predicts poor prognosis. Mol. Biol. Rep. 46 (3), 2771–2778.

    Article  CAS  PubMed  Google Scholar 

  125. Holmberg Olausson K., Nister M., Lindstrom M. 2014. Loss of nucleolar histone chaperone NPM1 triggers rearrangement of heterochromatin and synergizes with a deficiency in DNA methyltransferase DNMT3a to drive ribosomal DNA transcription. J. Biol. Chem. 289 (50), 34601–34619.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kobayashi T. 2008. A new role of the rDNA and nucleolus in the nucleus—rDNA instability maintains genome integrity. Bioessays. 30 (3), 267–272.

    Article  CAS  PubMed  Google Scholar 

  127. O'Sullivan J., Pai D., Cridge A., Engelke D., Ganley A. 2013. The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure? Biomol. Concepts. 4 (3), 277–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Audas T., Jacob M., Lee S. 2012. Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol. Cell. 45 (2), 147–157.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was funded by the Ministry of Science and Higher Education of the Russian Federation, grant no. 075-15-2020-809 (13.1902.21.0030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sadova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Authors declare no conflicts of interests. The article does not contain the investigation with human participants or animals as objects.

ADDITIONAL INFORMATION

The article was translated by the authors.

Additional information

Translated by A. A. Sadova

Abbreviations: ETS, external transcribed spacer; IGS-RNA, RNAs, transcribed from rIGS; ITS, internal transcribed spacer; lncRNA, long non-coding RNA; ncRNA, non-coding RNA; NOR, nucleolus organizer region; NoRC, nucleolar remodeling complex; NuRD, nucleosome remodeling and deacetylation; PAPAS, promoter and pre-rRNA antisense RNA; rIGS, ribosomal intergenic spacer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadova, A.A., Panteleev, D.Y. & Pavlova, G.V. The Structure, Expression, and Non-Canonical Functions of Human rDNA: The Role of Non-Coding Regions. Mol Biol 57, 398–411 (2023). https://doi.org/10.1134/S002689332303007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689332303007X

Keywords:

Navigation