Skip to main content
Log in

Structural and functional organization of the plasmid regulons of Rhizobium leguminosarum symbiotic genes

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The structure of the plasmid locus containing the sym-genes (nod-, nif-, and fix-operons) was investigated in eight Rhizobium leguminosarum strains differing in their origin and host specificity, including five strains of the viciae biovar—symbionts of pea (3), forage beans (1), and Vavilovia (1)—as well as three strains of the biovar trifolii (clover symbionts). Strains of R. leguminosarum bv. viciae, which possess the nodX gene (controlling acetylation of the Nod factor, which is responsible for the ability of rhizobia to form symbioses with a broad spectrum of hosts, including the “Afghan” pea lines, homozygous by the allele sym2A), are characterized by a less compact location of the sym-genes than the strains lacking the nodX gene. The size of the symbiotic cluster in the strains possessing nodX was 94.5 ± 3.5 kb, with the share of the sym-genes of 36.5 ± 1.5%, while for the strains lacking nodX these values were 61.7 ± 3.7 kb and 56.3 ± 1.4%, respectively (significant difference at P 0 < 0.01). Syntenic structures were revealed in the symbiotic regions of strains Vaf12, UPM1131, and TOM, as well as syntenic structures of non-symbiotic regions in strains Vaf12, TOM, and WSM1689. The correlation coefficients between the matrices of genetic distances in the analyzed strains for the nodABC, nifHDK, and fixABC operons were on average 0.993 ± 0.002, while their values for the plasmid sites located between the sym-genes were considerably less (0.706 ± 0.010). In these regions, 21 to 27% of the genes were involved in amino acid transport and metabolism, which was substantially higher than the average for the genome of R. leguminosarum bv. viciae (11–12%). These data suggest that the evolution of R. leguminosarum bv. viciae, defined by narrowing of the host specificity (associated with a loss of the nodX gene), was accompanied by reduction of the regions of plasmids located between the sym-genes, as well as by specialization of these areas to perform the functions related to symbiotic nitrogen fixation. The observed increase of density in the cluster of sym-genes may be associated with intensification of their horizontal transfer in the populations of rhizobia, which determines the speed of evolution of the symbiotic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Darling, A.C., Mau, B., Blattner, F.R., and Perna, N.T., Mauve: multiple alignment of conserved genomic sequence with rearrangements, Genome Res., 2004, vol. 14, pp. 1394–1403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daya, D.A., Pooleb, P.S., Tyermanc, S.D., and Rosendahl, L., Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules, Cell. Mol. Life Sci., 2001, vol. 58, pp. 61–71.

    Article  Google Scholar 

  • Flores, M., Mavingui, P., Girard, L., Perret, X., Broughton, W.J., Martínez-Romero, E., Dávila, G., and Palacios, R., Three replicons of Rhizobium sp. strain NGR234 harbor symbiotic gene sequences, J. Bacteriol., 1998, vol. 180, pp. 6052–6053.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-de los Santos, A., Brom, S., and Romero, D., Rhizobium plasmids in bacteria-legume interactions, World J. Microbiol. Biotechnol., 1996, vol. 12, pp. 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Kimeklis, A.K., Safronova, V.I., Kuznetsova, I.G., Sazanova, A.L., Belimov, A.A., Pinaev, A.G., Chizhevskaya, E.P., Pukhaev, A.R., Popov, K.P., Andronov, E.E., and Provorov, N.A., Phylogenetic analysis of Rhizobium strains isolated from root nodules of Vavilovia formosa (Stev.) Fed., Sel’skokhoz. Biol., 2015, vol. 50, no. 5, pp. 655–664.

    Google Scholar 

  • Koyanagi, T., Katayama, T., Suzuki, H., and Kumagai, H., The LIV-I/LS system as a determinant of azaserine sensitivity of Escherichia coli K-12, FEMS Microbiol. Lett., 2004, vol. 237, pp. 73–77.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Reth, A., Meletzus, D., Sevilla, M., and Kennedy, C., Characterization of a major cluster of nif,fix,and associated genes in a sugarcane endophyte,Acetobacter diazotrophicus, J. Bacteriol., 2000, vol. 182, pp. 7088–7091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makasheva, R.Kh., Gorokh (Pea), Leningrad: Kolos, 1973.

    Google Scholar 

  • Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., Lu, F., Marchler, G.H., Song, J.S., Thanki, N., Wang, Z., Yamashita, R.A., Zhang, D., Zheng, C., and Bryant, S.H., CDD: NCBI’s conserved domain database, Nucleic Acids Res., 2015, vol. 43, pp. D222–D226.

    Article  PubMed  Google Scholar 

  • Mavingui, P., Flores, M., Guo, X., Dávila, G., Perret, X., Broughton, W.J., and Palacios, R., Dynamics of genome architecture in Rhizobium sp. strain NGR234, J. Bacteriol., 2002, vol. 184, pp. 171–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazur, A., De Meyer, S.E., Tian, R., Wielbo, J., Zebracki, K., Seshadri, R., Reddy, T.B.K., Markowitz, V., Ivanova, N.N., Pati, A., Woyke, T., Kyrpides, N.C., and Reeve, W., High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland, Stand. Genomic Sci., 2015, vol. 10, p. 36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikic, A., Smykal, P., Kenicer, G., Sarukhanyan, N., Akopian, J., Gabrielyan, I., Vanyan, A., Sinjushin, A., Demidenko, N., Cupina, B., Mihailovic, V., Vishnyakova, M., and Ambrose M., Achievements in research on Vavilovia (Vavilovia formosa (Stev.) Fed.), a legume crop wild relative, Field Veg. Crop Res., 2010, vol. 47, pp. 387–394.

    Google Scholar 

  • Novikova, N. and Safronova, V., Transconjugants of Agrobacterium radiobacter harbouring sym genes of Rhizobium galegae can form an effective symbiosis with Medicago sativa, FEMS Microbiol. Lett., 1992, vol. 93, pp. 261–268.

    Article  CAS  Google Scholar 

  • Okazaki, S., Noisangiam, R., Okubo, T., Kaneko, T., Oshima, K., Hattori, M., Teamtisong, K., Songwattana, P., Tittabutr, P., Boonkerd, N., Saeki, K., Sato, S., Uchiumi, T., Minamisawa, K., and Teaumroong, N., Genome analysis of a novel Bradyrhizobium sp. DOA9 carrying a symbiotic plasmid, PLoS One, 2015, vol. 10, p. e0117392.

    Article  PubMed  PubMed Central  Google Scholar 

  • Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A.R., Xia, F., and Stevens, R., The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST), Nucleic Acids Res., 2014, vol. 42, pp. D206–D214.

    Article  CAS  PubMed  Google Scholar 

  • Ovtsyna, A.O., Rademaker, G.J., Esser, E., Weinman, J., Rolfe, B.G., Tikhonovich, I.A., Lugtenberg, B.J.J., Thomas-Oates, J.E., and Spaink, H.P., Comparison of characteristics of the nodX genes from various Rhizobium leguminosarum strains, MPMI, 1999, vol. 12, no. 3, pp. 252–258.

    Article  CAS  PubMed  Google Scholar 

  • Provorov, N.A. and Andronov, E.E., Evolution of root nodule bacteria: reconstruction of the speciation processes resulting from genomic rearrangements in a symbiotic system, Microbiology (Moscow), 2016, vol. 85, no. 2, pp. 131–139.

    Article  CAS  Google Scholar 

  • Provorov, N.A. and Vorob’ev, N.I., Geneticheskie osnovy evolyutsii rastitel’no-mikrobnogo simbioza (Genetic Bases of the Evolution of Plant-Microbial Symbiosis, S.-Pb., Inform-Navigator, 2012.

    Google Scholar 

  • Rumyantseva, M.L., Simarov, B.V., Onishchuk, O.P., Andronov, E.E., Chizhevskaya, E.P., Belova, V.S., Kurchak, O.N., Muntyan, A.N., Rumyantseva, T.B., and Zatovskaya, T.V., Biologicheskoe raznoobrazie kluben’kovykh bakterii v ekosistemakh i agrotsenozakh: teoreticheskie osnovy i metody (Biodiversity of Root Nodule Bacteria in Ecosystems and Agrocenoses: Theoretical Basics and Methods), S.-Pb.: Pushkin, 2011.

    Google Scholar 

  • Safronova, V.I., Kimeklis, A.K., Chizhevskaya, E.P., Belimov, A.A., Andronov, E.E., Pinaev, A.G., Pukhaev, A.R., Popov, K.P., and Tikhonovich, I.A., Genetic diversity of rhizobia isolated from nodules of the relic species Vavilovia formosa (Stev.) Fed., Antonie van Leeuwenhoek, 2014, vol. 105, pp. 389–399.

    Article  PubMed  Google Scholar 

  • Sullivan, J.T., Trzebiatowski, J.R., Cruickshank, R.W., Gouzy, J., Brown, S.D., Elliot, R.M., Fleetwood, D.J., McCallum, N.G., Rossbach, U., Stuart, G.S., Weaver, J.E., Webby, R.J., De Bruijn, F.J., and Ronson, C.W., Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A, J. Bacteriol., 2002, vol. 184, pp. 3086–3095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakovlev, G.P., Bobovye zemnogo shara (Legumes of the World), Leningrad: Nauka, 1991.

    Google Scholar 

  • Young, J.P.W., Crossman, L.C., Johnston, A.W.B., Thomson, N.R., Ghazoui, Z.F., Hull, K.H., Wexler, M., Curson, A.R., Todd, J.D., Poole, P.S., Mauchline, T.H., East, A.K., Quail, M.A., Churcher, C., Arrowsmith, C., et al., The genome of Rhizobium leguminosarum has recognizable core and accessory components, Genome Biol., 2006, vol. 7, no. 4, p. R34.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Chirak.

Additional information

Original Russian Text © E.R. Chirak, V.V. Kopat’, A.K. Kimeklis, V.I. Safronova, A.A. Belimov, E.L. Chirak, A.E. Tupikin, E.E. Andronov, N.A. Provorov, 2016, published in Mikrobiologiya, 2016, Vol. 85, No. 6, pp. 693–702.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirak, E.R., Kopat’, V.V., Kimeklis, A.K. et al. Structural and functional organization of the plasmid regulons of Rhizobium leguminosarum symbiotic genes. Microbiology 85, 708–716 (2016). https://doi.org/10.1134/S0026261716060072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261716060072

Keywords

Navigation