Skip to main content
Log in

A universal method for quantitative characterization of growth and metabolic activity of microbial biofilms in static models

  • Short Communications
  • Published:
Microbiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Berridge, M.V. and Tan, A.S., Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction, Arch. Biochem. Biophys., 1993, vol. 303, pp. 474–482.

    Article  CAS  PubMed  Google Scholar 

  • Chavant, P., Gaillard-Martinie, B., Talon, R., Hébraud, M., and Bernardi, T., A new device for rapid evaluation of biofilm formation potential by bacteria, J. Microbiol. Methods, 2007, vol. 68, pp. 605–612.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, G.D., Simpson, W.A., Younger, J.J., Baddour, L.M., Barrett, F.F., Melton, D.M., and Beachey, E.H., Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices, J. Clin. Microbiol., 1985, vol. 22, pp. 996–1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coenye, T. and Nelis, H.J., In vitro and in vivo model systems to study microbial biofilm formation, J. Microbiol. Methods, 2010, vol. 83, pp. 89–105.

    Article  CAS  PubMed  Google Scholar 

  • Fuchslocher Hellemann, C., Grade, S., Heuer, W., Dittmer, M.P., Stiesch, M., Schwestka-Polly, R., and Demling, A.P., Three-dimensional analysis of initial biofilm formation on polytetrafluoroethylene in the oral cavity, J. Orofac. Orthop., 2013, vol. 74, pp. 458–467.

    Article  CAS  PubMed  Google Scholar 

  • Gannesen, A.V., Zhurina, M.V., Veselova, M.A., Khmel’, I.A., and Plakunov, V.K., Regulation of biofilm formation by Pseudomonas chlororaphis in an in vitro system, Microbiology (Moscow), 2015, vol. 84, no. 3, pp. 319–327.

    Article  CAS  Google Scholar 

  • Grare, M., Fontanay, S., Cornil, C., Finance, C, and Duval, R.E., Tetrazolium salts for MIC determination in microplates: Why? Which salt to select? How?, J. Microbiol. Methods, 2008, vol. 75, pp. 156–159.

    Article  CAS  PubMed  Google Scholar 

  • Guillier, L., Stahl, V., Hezard, B., Notz, E., and Briandet, R., Modelling the competitive growth between Listeria monocytogenes and biofilm microflora of smear cheese wooden shelves, Int. J. Food Microbiol., 2008, vol. 128, pp. 51–57.

    Article  CAS  PubMed  Google Scholar 

  • Hassanpourfard, M., Sun, X., Valiei, A., Mukherjee, P., Thundat, T., Liu, Y., and Kumar, A., Protocol for biofilm streamer formation in a microfluidic device with micro-pillars, J. Vis. Exp., 2014, vol. 90. doi 10.3791/51732

    Google Scholar 

  • Kim, J., Park, Y.-D., and Chung, S., Microfluidic approaches to bacterial biofilm formation, Molecules, 2012, vol. 17, pp. 9818–9834.

    Article  CAS  PubMed  Google Scholar 

  • Kondoh, K. and Hashiba, M., Inhibitory effect of macrolide antibiotics on biofilm formation by Pseudomonas aeruginosa, Nihon Jibiinkoka Gakkai Kaiho, 1998, vol. 101, pp. 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Lebeaux, D., Chauhan, A., Renducles, O., and Beloin, C,. From in vitro to in vivo models of bacterial biofilm-related infections, Pathogens, 2013, vol. 2, pp. 288–356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, D.G., Park, S.J., and Kim, S.J., Influence of pipe materials and VBNC cells on culturable bacteria in a chlorinated drinking water model system, J. Microbiol. Biotechnol., 2007, vol. 17, pp. 1558–1562.

    CAS  PubMed  Google Scholar 

  • Li, L., Mendis, N., Trigui, H., Oliver, J.D., and Faucher, S.P., The importance of the viable but non-culturable state in human bacterial pathogens, Front. Microbiol., 2014, vol. 5, p. 258. doi 10.3389/fmicb.2014.00258

    PubMed  PubMed Central  Google Scholar 

  • Lyamin. A.V., Botkin, E.A., and Zhestkov, A.V., Methods of biofilm detection in medicine, Klin. Mikrobiol. Antimikrob. Khimioter., 2012, vol. 14, no. 1, pp. 17–22.

    Google Scholar 

  • Macià, M.D., Rojo-Molinero, E., and Oliver, A., Antimicrobial susceptibility testing in biofilm growing bacteria, Clin. Microbiol. Infect., 2014, vol. 20, pp. 981–990.

    Article  PubMed  Google Scholar 

  • Mart’yanov, S.V., Zhurina, M.V., El’Registan, G.I., and Plakunov, V.K., Activation of formation of bacterial biofilms by azithromycin and prevention of this effect, Microbiology (Moscow), 2014, vol. 83, no. 6, pp. 723–731.

    Article  Google Scholar 

  • McBain, A.J., Chapter 4: In vitro biofilm models: an overview, Adv. Appl. Microbiol., 2009, vol. 69, pp. 99–132.

    Article  CAS  PubMed  Google Scholar 

  • Netuschil, L., Auschill, T.M, Sculean, A., and Arweiler, N.B., Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms–which stain is suitable?, BMC Oral Health, 2014, vol. 14, p. 2. doi 10.1186/1472-6831-14-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer, R.J., Jr., Microscopy flowcells: perfusion chambers for real-time study of biofilms, Methods Enzymol., 1999, vol. 310, pp. 160–166.

    Article  PubMed  Google Scholar 

  • Peeters, E., Nelis, H.J., and Coenye, T., Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates, J. Microbiol. Methods, 2008, vol. 72, pp. 157–165.

    Article  CAS  PubMed  Google Scholar 

  • Planchon, S., Gaillard-Martinie, B., Dordet-Frisoni, E., Bellon-Fontaine, M.N., Leroy, S., Labadie, J., Hébraud, M., and Talon, R., Formation of biofilm by Staphylococcus xylosus, Int. J. Food. Microbiol., 2006, vol. 109, pp. 88–96.

    Article  CAS  PubMed  Google Scholar 

  • Rudney, J.D., Chen, R., Lenton, P., Li, J., Li, Y., Jones, R.S., Reilly, C., Fok, A.S., and Aparicio, C.A., A reproducible oral microcosm biofilm model for testing dental materials, J. Appl. Microbiol., 2012, vol. 113, pp. 1540–1553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takei, S., Hotomi, M., and Yamanaka, N., Minimal biofilm eradication concentration of antimicrobial agents against nontypeable Haemophilus influenzae isolated from middle ear fluids of intractable acute otitis media, J. Infect. Chemother., 2013, vol. 19, pp. 504–509.

    Article  CAS  PubMed  Google Scholar 

  • Toyofuku, M., Roschitzki, B., Riedel, K., and Eberl, L., Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix, J. Proteome Res., 2012, vol. 11, vol. 4906−4915.

    Google Scholar 

  • Trémoulet, F., Duché, O., Namane, A., Martinie, B., and Labadie, J.C., A proteomic study of Escherichia coli O157:H7 1. NCTC 12900 cultivated in biofilm or in planktonic growth mode, FEMS Microbiol. Lett., 2002, vol. 215, pp. 7–14.

    Article  PubMed  Google Scholar 

  • Vandecandelaere, I., Van Acker, H., and Coenye, T.A., Microplate-based system as in vitro model of biofilm growth and quantification, Methods Mol. Biol., 2016, vol. 1333, pp. 53–66.

    Article  PubMed  Google Scholar 

  • Verstraeten, N., Knapen, W., Fauvart, M., and Michiels, J., A historical perspective on bacterial persistence, Methods Mol. Biol., 2016, vol. 1333, pp. 3–13.

    Article  PubMed  Google Scholar 

  • Wang, H., Cheng, H., Wang, F., Wei, D., and Wang, X., An improved 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells, J. Microbiol. Methods, 2010, vol. 82, pp. 330–333.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Plakunov.

Additional information

Original Russian Text © V.K. Plakunov, S.V. Mart’yanov, N.A. Teteneva, M.V. Zhurina, 2016, published in Mikrobiologiya, 2016, Vol. 85, No. 4, pp. 484–489.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plakunov, V.K., Mart’yanov, S.V., Teteneva, N.A. et al. A universal method for quantitative characterization of growth and metabolic activity of microbial biofilms in static models. Microbiology 85, 509–513 (2016). https://doi.org/10.1134/S0026261716040147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261716040147

Navigation