Skip to main content
Log in

Biochemical features of the degradation of pollutants by Rhodococcus as a basis for contaminated wastewater and soil cleanup

  • Review
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Rhodococcus bacteria are considered to be promising degraders of persistent pollutants and are the basis of biological preparations for contaminated wastewater and soil cleanup. Biotechnological application of this group of bacteria is based on the peculiaraties of their metabolism. This review briefly discusses the following main points:

  1. I.

    Growth of Rhodococcus on various aromatic substrates

  2. II.

    Chloro/methylcatechol transformation pathways

    3-Chlorocatechol branch of the modified ortho-pathway

    4-Chlorocatechol branch of the modified ortho-pathway

    Modified 3-chlorocatechol branch in Rhodococcus opacus 1CP Meta-cleavage of chlorocatechols

    Modified pathway for methylcatechol degradation

  3. III.

    Approaches to the enhancement of degradation activity

  4. IV.

    Rhodococcus-based biopreparations

  5. V.

    Prospects

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitunen, V., Valo, R., and Salkinoja-Salonen, M., Contamination of Soil around Wood-Preserving Facilities by Polychlorinated Aromatic Compounds, Environ. Sci. Technol., 1987, vol. 21, no. 1, pp. 96–101.

    CAS  Google Scholar 

  2. Faroon, O., Keith, L., Smith-Simon, C., and De Rosa, C., Polychlorinated Biphenyls. Human Health Aspects, in Concise International Chemical Assessment Document 55, Geneva: World health Organization, 2003.

    Google Scholar 

  3. Weber, R., Watson, A., Forter, M., and Oliaei, F., Persistent Organic Pollutants and Landfills—a Review of Past Experiences and Future Challenges, Waste Manag. Res., 2011, vol. 29, no. 1, pp. 107–121.

    PubMed  CAS  Google Scholar 

  4. Federal Agency for Hydrometeorology and Environmental Monitoring, “Environmental Pollution in the Russian Federation in 2006,” Israel, Y.A., Tsiban’, A.B., Tschernogaeva, G.M., Tscheljukanov, V.V. and Egorov, V.I., Moscow: Rosgidromet, 2007.

    Google Scholar 

  5. Strokin, N.A., Electron-Beam Treatment of Drinking Water in an Industrial System, Khim. Vys. Energ. (Moscow), 2007, vol. 41, no. 1, pp. 1–4.

    CAS  Google Scholar 

  6. Bell, K.S., Philp, J.C., Aw, D.W.J., and Christofi, N., The Genus Rhodococcus, J. Appl. Microbiol., 1998, vol. 85, no. 2, pp. 195–210.

    PubMed  CAS  Google Scholar 

  7. Pieper, D.H., Aerobic Degradation of Polychlorinated Biphenyls, Appl. Microbiol. Biotechnol., 2005, vol. 67.

  8. Martínková, L., Uhnáková, B., Pátek, M., Nešvera, J., Ken, V., Biodegradation Potential of the Genus Rhodococcus, Environment International, 2009, vol. 35, no. 1, pp. 162–177.

    PubMed  Google Scholar 

  9. de Carvalho, C.C.C.R. and da Fonseca, M.M.R., The Remarkable Rhodococcus erythropolis, Appl. Microbiol. Biotechnol., 2005, vol. 67, no. 6, pp. 715–726.

    PubMed  Google Scholar 

  10. Plotnikova, E.G., Rybkina (Egorova), D.O., Demakov, V.A., Strain Rhodococcus ruber, Decomposer of Polychlorinated Biphenyls, PatentRU2262531, C2, 2005, Bull. no. 29.

  11. Rybkina, D.O., Plotnikova, E.G., Dorofeeva, L.V., Mironenko, Yu. A., and Demakov, V.A., A New Gram-Positive Bacterium with a Unique Ability to Degrade ortho- and para-Chlorinated Biphenyls, Mikrobiologiya (Moscow), 2003, vol. 72, pp. 759–765.

    CAS  Google Scholar 

  12. Shumkova, E.S., Solyanikova, I.P., Plotnikova, E.G., and Golovleva, L.A., Degradation of para-Toluate by the Bacterium Rhodococcus ruber P25, Mikrobiologiya (Moscow), 2009, vol. 78, no. 3, pp. 376–378.

    CAS  Google Scholar 

  13. Solyanikova, I.P., Travkin, V.M., Rybkina, D.O., Plotnikova, E.G., and Golovleva, L.A., Variability of the Enzyme System of Nocardioform Bacteria as a Basis r of Their Metabolic Activity, J. Environ. Sci. Health, 2008, vol. 43, no. 3, pp. 241–252.

    CAS  Google Scholar 

  14. Egorova, D.O., Shumkova, E.S., Demakov, V.A., and Plotnikova, E.G., Degradation of Chlorinated Biphenyls and Products of Their Bioconversion by Rhodococcus sp. B7a Strain, Prikl. Biokhim. Mikrobiol. (Moscow), 2010, vol. 46, pp. 644–650.

    CAS  Google Scholar 

  15. Robrock, K.R., Mohn, W.W., Eltis, L.D., and Alvarez-Cohen, L., Biphenyl and Ethylbenzene Dioxygenases of Rhodococcus jostii RHA1 Transform PBDEs, Biotechnol. Bioeng., 2011, vol. 108, no. 2, pp. 313–321.

    PubMed  CAS  Google Scholar 

  16. Hara, H., Eltis, L.D., Davies, J.E., Mohn, W.W., Transcriptomic Analysis Reveals a Bifurcated Terephthalate Degradation Pathway in Rhodococcus sp. Strain RHA1, J. Bacteriol., 2007, vol. 189, no. 5, pp. 1641–1647.

    PubMed  CAS  Google Scholar 

  17. Goncalves, E.R., Hara, H., Miyazawa, D., Davies, J.E., Eltis, L.D., and Mohn, W.W., Transcriptomic Assessment of Isozymes in the Biphenyl Pathway of Rhodococcus sp. Strain RHA1, Appl. Environ. Microbiol., 2006, vol. 72, no. 9, pp. 6183–6193.

    PubMed  CAS  Google Scholar 

  18. Navarro-Llorens, J.M., Patrauchan, M.A., Stewart, G.R., Davies, J.E., Eltis, L.D., and Mohn, W.W., Phenylacetate Catabolism in Rhodococcus sp. Strain RHA1: a Central Pathway for Degradation of Aromatic Compounds, J. Bacteriol., 2005, vol. 187, no. 13, pp. 4497–4504.

    PubMed  CAS  Google Scholar 

  19. Asturias, J.A., Eltis, L.D., Prucha, M., and Timmis, K.N., Analysis of Three 2,3-Dihydroxybiphenyl 1,2-Dioxygenases Found in Rhodococcus globerulus P6: Identification of a New Family of Extradiol Dioxygenases, J. Biol. Chem., 1994, vol. 269, no. 10, pp. 7807–7815.

    PubMed  CAS  Google Scholar 

  20. Taguchi, K., Motoyama, M., Iida, T., and Kudo, T., Polychlorinated Biphenyl/Biphenyl Degrading Gene Clusters in Rhodococcus sp. K37, HA99, and TA431 Are Different from Well-Known bph Gene Clusters of Rhodococci, Biosci. Biotechnol. Biochem., 2007, vol. 71, no. 5, pp. 1136–1144.

    PubMed  CAS  Google Scholar 

  21. Choi, K.Y., Kim, D., Koh, S.C., So, J.S., Kim, J.S., and Kim, E., Molecular Cloning and Identification of a Novel Oxygenase Gene Specifically Induced During the Growth of Rhodococcus sp. Strain T104 on Limonene, J. Microbiol., 2004, vol. 42, pp. 160–162.

    PubMed  CAS  Google Scholar 

  22. Ghosh, A., Khurana, M., Chauhan, A., Takeo, M., Chakraborti, A.K., and Jain, R.K., Degradation of 4-Nitrophenol, 2-Chloro-4-Nitrophenol, and 2,4-Dinitrophenol by Rhodococcus imtechensis Strain RKJ300, Environ. Sci. Technol., 2010, vol. 44, no. 3, pp. 1069–1077.

    PubMed  CAS  Google Scholar 

  23. Lenke, H., Pieper, D.H., Bruhn, C., and Knackmuss, H.-J., Degradation of 2,4-Dinitrophenol by Two Rhodococcus erythropolis Strams, HL 24-1 and HL 24-2, Appl. Environ. Microbiol., 1992, vol. 58, no. 9, pp. 2928–2932.

    PubMed  CAS  Google Scholar 

  24. Takeo, M., Yasukawa, T., Abe, Y., Niihara, S., Maeda, Y., and Negoro, S., Cloning and Characterization of a 4-Nitrophenol Hydroxylase Gene Cluster from Rhodococcus sp. PN1, J. Biosci. Bioeng., vol. 95, 2003, pp. 139–145.

    PubMed  CAS  Google Scholar 

  25. Kitagawa, W., Kimura, N., Kamagata, Y., A Novel p-Nitrophenol Degradation Gene Cluster from a Gram-Positive Bacterium Rhodococcus opacus SAO 101, J. Bacteriol., 2004, vol. 186, no. 15, pp. 4894–4902.

    PubMed  CAS  Google Scholar 

  26. Liang, R., Wu, X., Dai, Q., Jin, D., and Wang, Y., Genetic Diversity of Phthalic Acid Esters-Degrading Bacteria Isolated from Different Geographical Regions of China, Antonie Van Leeuwenhoek, 2010, vol. 97, no. 1, pp. 79–89.

    PubMed  CAS  Google Scholar 

  27. Fahy, A., Ball, A.S., Lethbridge, G., Timmis, K.N., and McGenity, T.J., Isolation of Alkali-Tolerant Benzene-Degrading Bacteria from a Contaminated Aquifer, Lett. Appl. Microbiol., 2008, vol. 47, no. 1, pp. 60–66.

    PubMed  CAS  Google Scholar 

  28. Rapp, P. and Gabriel-Jurgens, L.H., Degradation of Alkanes and Highly Chlorinated Benzenes, and Production of Biosurfactants by a Psychrophilic Rhodococcus sp. and Genetic Characterization of Its Chlorobenzene Dioxygenase, Microbiology (UK), 2003, vol. 149, no. 10, pp. 2879–2890.

    CAS  Google Scholar 

  29. Seth-Smith, H.M., Edwards, J., Rosser, S.J.. Rathbone, D.A., and Bruce, N., The Explosive-Degrading Cytochrome P450 System Is Highly Conserved among Strains of Rhodococcus spp., Appl. Environ. Microbiol., 2008, vol. 74, no. 14, pp. 4550–4552.

    PubMed  CAS  Google Scholar 

  30. Qi, Y., Zhao, L., Olusheyi, O.Z., and Tan, X., Isolation and Preliminary Characterization of a 3-Chlorobenzoate Degrading Bacteria, J. Environ. Sci. (China), 2007, vol. 19, no. 3, pp. 332–337.

    CAS  Google Scholar 

  31. Gorlatov, S.N., Maltseva, O.V., Shevchenko, V.I., and Golovleva, L.A., Degradation of Chlorophenols by a Culture of Rhodococcus erythropolis, Microbiology (Moscow, Engl. Transl.), 1989, vol. 58, pp. 647–651.

    Google Scholar 

  32. Maltseva, O.V., Solyanikova, I.P., and Golovleva, L.A., Pyrocatechases of the Rhodococcus erythropolis Strain, a Chlorophenol Decomposer: Purification and Properties, Biochemistry (Moscow) (Engl. Transl.), 1991, vol. 56, pp. 2188–2197.

    CAS  Google Scholar 

  33. Kolomytseva, M.P., Baskunov, B.P., and Golovleva, L.A., Intradiol Pathway of para-Cresol Conversion by Rhodococcus opacus 1CP, Biotechnol. J., 2007, vol. 2, no. 7, pp. 886–893.

    PubMed  CAS  Google Scholar 

  34. Moisseeva, O.V., Lin’ko, E.V., Baskunov, B.P., and Golovleva, L.A., Degradation of 2-Chlorophenol by the Strain Rhodococcus opacus 1CP, Microbiology (Moscow, Engl. Transl.), 1999, vol. 68, pp. 400–405.

    Google Scholar 

  35. Suvorova, M.V., Solyanikova, I.P., and Golovleva, L.A., Specificity of Catechol ortho-Cleavage during para-Toluate Degradation by Rhodococcus opacus 1CP, Biochemistry (Moscow) (Engl. Transl.), 2006, vol. 71, no. 12, pp. 1316–1323.

    CAS  Google Scholar 

  36. Golovlev, E.L. The Biology of Saprophytic Mycobacteria, Doctoral (Biol.) Dissertation, Institute of Biochemistry and Physiology of Microorganisms, Pushchino, 1983.

    Google Scholar 

  37. Shumkova, E.S., Solyanikova, I.P., Plotnikova, E.G., and Golovleva, L.A., Phenol Degradation by Rhodococcus opacus Strain 1G, Prikl. Biokhim. Mikrobiol. (Engl. Transl.), 2009, vol. 45, no. l, pp. 43–49.

    CAS  Google Scholar 

  38. Konovalova, E.I., Solyanikova, I.P., and Golovleva, L.A., Degradation of 4-Chlorophenol by the Bacterium Rhodococcus opacus 6a, Microbiology (Moscow, Engl. Transl.), 2009, vol. 78, no. 6, pp. 805–807.

    CAS  Google Scholar 

  39. Solyanikova, I.P., Konovalova, E.I., and Golovleva, L.A., Methylcatechol Dipoxygenase of Rhodococcus opacus 6a—a New Type of Catechol-Cleaving Enzyme, Biochemistry (Moscow) (Engl. Transl.), 2009, vol. 74, no. 9, pp. 1994–1001.

    Google Scholar 

  40. Jadan, A.P., Van Berkel, W.J.H., Golovleva, L.A., and Golovlev, E.L., Purification and Properties of p-Hydroxy-benzoate Hydroxylases from Rhodococcus Strams, Biochemistry (Moscow) (Engl. Transl.), 2001, vol. 66, no. 8, pp. 1104–1010.

    Google Scholar 

  41. Bondar, V.S., Boersma, M.G., Golovlev, E.L., Vervoort, J., van Berkel, W.J.H., Finkelstein, Z.I., Solyanikova, LP., Golovleva, L.A., and Rietjens, I.M.C.M., 19F NMR Study on the Biodegradation of Fluorophenols by Various Rhodococcus Species, Biodegradation, 1998, vol. 9, no. 6, pp. 475–486.

    PubMed  CAS  Google Scholar 

  42. Cavalca, L., Guerrieri, N., Colombo, M., Pagani, S., and Andreoni, V., Enzymatic and Genetic Profiles in Environmental Strains Grown on Polycyclic Aromatic Hydrocarbons, Antonie van Leeuwenhoek, 2007, vol. 91, no. 4, pp. 315–325.

    PubMed  CAS  Google Scholar 

  43. Taki, H., Syutsubo, K., Mattison, R.G., and Harayama, S., Identification and Characterization of o-Xylene-Degrading Rhodococcus spp. Which Were Dominant Species in the Remediation of o-Xylene-Contaminated Soils, Biodegradation, 2007, vol. 18, no. l, pp. 17–26.

    PubMed  CAS  Google Scholar 

  44. Kim, D., Kim, Y.S., Kim, S.K., Kim, S.W., Zylstra, G.J., Kim, Y.M., and Kim, E., Monocyclic Aromatic Hydrocarbon Degradation by Rhodococcus sp. Strain DK17, Appl. Environ. Microbiol., 2002, vol. 68, no. 7, pp. 3270–3278.

    PubMed  CAS  Google Scholar 

  45. Haddad, S., Eby, D.M., and Neidle, E.L., Cloning and Expression of the Benzoate Dioxygenase Genes from Rhodococcus sp. Strain 19070, Appl. Environ. Microbiol., 2001, vol. 67, no. 6, 2507–2514.

    PubMed  CAS  Google Scholar 

  46. Zaitsev, G.M., Uotila, J.S., Tsitko, I.V., Lobanok, A.G., and Salkinoja-Salonen, M.S., Utilization of Halogenated Benzenes, Phenols, and Benzoates by Rhodococcus opacus GM-14, Appl. Environ. Microbiol., 1995, vol. 61, no. 12, pp. 4191–4201.

    PubMed  CAS  Google Scholar 

  47. Armstrong, S. and Patel, T.R., 1,3,5-Trihydroxy-benzene Biodegradation by Rhodococcus sp. BPG-8, Can. J. Microbiol., 1993, vol. 39, no. 2, pp. 175–179.

    PubMed  CAS  Google Scholar 

  48. Janke, D., Al-Mofarji, T., Straube, G., Schumann, P., and Prauser, H., Critical Steps in Degradation of Chloroaromatics by Rhodococci. I. Initial Enzyme Reactions Involved in Catabolism of Aniline, Phenol and Benzoate by Rhodococcus sp. An 117 and An 213, J. Basic Microbiol., 1988, vol. 28, no. 8, pp. 509–518.

    CAS  Google Scholar 

  49. Di Gennaroa, P., Rescallib, E., Gallib, E., Selloc, G., and Bestetti, G., Characterization of Rhodococcus opacus R7, a Strain Able to Degrade Naphthalene and o-Xylene Isolated from a Polycyclic Aromatic Hydrocarbon-Contaminated Soil, Res. Microbiol., 2001, vol. 152, no. 7, pp. 641–651.

    Google Scholar 

  50. Uz, I., Duan, Y.P., and Ogram, A., Characterization of the Naphthalene-Degrading Bacterium, Rhodococcus opacus M213, FEMS Microbiol. Lett., 2000, vol. 185, no. 2, pp. 231–238.

    PubMed  CAS  Google Scholar 

  51. Kulakov, L.A., Allen, C.C.R., Lipscomb, D.A., and Larkin, M.J., Cloning and Characterization of a Novel cis-Naphthalene Dihydrodiol Dehydrogenase Gene (narB) from Rhodococcus sp. NCIMB112038, FEMS Microbiol. Lett., 2000, vol. 182, no. 2, pp. 327–331.

    PubMed  CAS  Google Scholar 

  52. Grund, E., Denecke, B., and Eichenlaub, R., Naphthalene Degradation via Salicylate and Gentisate by Rhodococcus sp. Strain B4, Appl. Environ. Microbiol., 1992, vol. 58, no. 6, pp. 1874–1877.

    PubMed  CAS  Google Scholar 

  53. Yu, B., Xu, P., Zhu, S., Cai, X., Wang, Y., Li, L., Li, F., Liu, X., and Ma, C., Selective Biodegradation of S and N Heterocycles by a Recombinant Rhodococcus erythropolis Strain Containing Carbazole Dioxygenase, Appl. Environ. Microbiol., 2006, vol. 72, no. 3, pp. 2235–2238.

    PubMed  CAS  Google Scholar 

  54. Aoshima, H., Hirase, T., Tada, T., Ichimura, N., Kato, H., Nagata, Y., Myoenzono, T., Taguchi, M., Takahashi, K., Hukuzumi, T., Aoki, T., Makino, S., Hagiya, K., and Ishiwata, H., Safety Evaluation of a Heavy Oil-Degrading Bacterium, Rhodococcus erythropolis C2, J. Toxicol. Sci., 2007, vol. 32, no. 1, pp. 69–78.

    PubMed  CAS  Google Scholar 

  55. Lee, M., Kim, M.K., Singleton, L, Goodfellow, M., and Lee, S.T., Enhanced Biodegradation of Diesel Oil by a Newly Identified Rhodococcus baikonurensis EN3 in the Presence of Mycolic Acid, J. Appl. Microbiol., 2006, vol. 100, no. 2, pp. 325–333.

    PubMed  CAS  Google Scholar 

  56. Jukov, D.V., Murigina, V.P., Kalyujny, S.V., Kinetic Peculiarities of the Degradation of Aliphatic Hydrocarbons by Bacteria Rhodococcus ruber and Rhodococcus erythropolis, Prikl. Biokhim. Mikrobiol (Engl. Transl.), 2007, vol. 43, pp. 657–663.

    Google Scholar 

  57. Paje, M.L., Neilan, B.A., and Couperwhite, I., A Rhodococcus Species That Thrives on Medium Saturated with Liquid Benzene, Microbiology (UK), 1997, vol. 143, no. 9, pp. 2975–2981.

    CAS  Google Scholar 

  58. Navratilova, J., Tvrzova, L., Durnova, E., Sproer, C., Sedlacek, I., Neca, J., and Neraec, M., Characterization of Rhodococcus wratislaviensis Strain J3 That Degrades 4-Nitrocatechol and Other Nitroaromatic Compounds, Antonie van Leeuwenhoek, 2005, vol. 87, no. 2, pp. 149–153.

    PubMed  CAS  Google Scholar 

  59. Murakami, S., Kodama, N., Shinke, R., and Aoki, K. Classification of Catechol 1,2-Dioxygenase Family: Sequence Analysis of a Gene for the Catechol 1,2-Dioxygenase Showing High Specificity for Methylcatechols from Gram+ Aniline-Assimilating Rhodococcus erythropolis AN-13, Gene, 1997, vol. 185, no. 1, pp. 49–54.

    PubMed  CAS  Google Scholar 

  60. Poelarends, G.J., Zandstra, M,. Bosma, T., Kulakov, L.A., Larkin, M.J., Marchesi, J.R., Weightman, A.J., and Janssen, D.B., Haloalkane-Utilizing Rhodococcus Strains Isolated from Geographically Distinct Locations Possess a Highly Conserved Gene Cluster Encoding Haloalkane Catabolism, J. Bacteriol., 2000, vol. 182, no. 10, pp. 2725–2731.

    PubMed  CAS  Google Scholar 

  61. Solyanikova, I.P., Konovalova, E.I., Shumkova, E.S., Plotnikova, E.G., and Golovleva, L.A., Bacteria of the Genus Rhodococcus — Promising Decomposers of Persistent Pollutants for Treatment of Sewage, Voda: Khim. Ekol. (Moscow), 2010, vol. 4, pp. 18–26.

    Google Scholar 

  62. Plotnikova, E.G., Egorova, D.O., and Demakov, V.A., Characteristics of Microorganisms Isolated from Technogenic Soils of Prikamiye, Ekologiya (Moscow), 2006, no. 4, pp. 261–268.

  63. Egorova, D.O., Plotnikova, E.G., Ananyina, L.N., Yastrebova, O.V., and Demakov, V.A., Gram-Positive Bacteria, Decomposers of Polychlorinated Biphenyls, Promising for Bioremediation of Contaminated Soils, Biotekhnologiya (Moscow), 2009, no. 3, pp. 72–79.

  64. McLeod, M.P., Warren, R.L., Hsiao, W.W.L. et al., The Complete Genome of Rhodococcus sp. RHA1 Provides Insights into a Catabolic Powerhouse, Proc. Natl. Acad. Sci. USA, 2006, vol. 102, no. 42, pp. 15582–15587.

    Google Scholar 

  65. Stecker, C., Johann, A., Herzberg, C., Averhoff, B., and Gottschalk, G., Complete Nucleotide Sequence and Genetic Organization of the 210-Kilobase Linear Plasmid of Rhodococcus erythropolis BD2, J. Bacteriol., 2003, vol. 185, no. 17, pp. 5269–5274.

    PubMed  CAS  Google Scholar 

  66. Mohn, W.W. and Tiedje, J.M., Microbial Reductive Dehalogenation, Microbiol. Rev., 1992, vol. 56, pp. 482–507.

    PubMed  CAS  Google Scholar 

  67. Cole, J.R., Cascarelli, A.L., Mohn, W.W., and Tiedje, J.M., Isolation and Characterization of a Novel Bacterium Growing via Reductive Dehalogenation of 2-Chlorophenol, Appl. Environ. Microbiol., 1994, vol. 60, no. 10, pp. 3536–3542.

    PubMed  CAS  Google Scholar 

  68. Häggblom, M.M., Microbial Breakdown of Halogenated Aromatic Pesticides and Related Compounds, FEMS Microbiol. Rev., 1992, vol. 103, pp. 28–72.

    Google Scholar 

  69. Suarez, M., Martin, M., Ferrer, E., and Garrido-Pertierra, A., Purification and Characterization of 4-Hydroxybenzoate 3-Hydroxylase from a Klebsiella pneumoniae Mutant Strain, Arch. Microbiol., 1995, vol. 164, no. 1, pp. 70–77.

    PubMed  CAS  Google Scholar 

  70. Briganti, F., Pessione, E., Giunta, C, Mazzoli, R., and Scozzafava, A., Purification and Catalytic Properties of Two Catechol 1,2-Dioxygenase Isozymes from Benzoate-Grown Cells of Acinetobacter radioresistens, J. Protein Chem., 2000, vol. 19, pp. 709–716.

    PubMed  CAS  Google Scholar 

  71. Schlömann, M., Evolution of Chlorocatechol Catabolic Pathways, Biodegradation, 1994, vol. 5, no. 3/4, pp. 301–321.

    PubMed  Google Scholar 

  72. Aoki, K., Konohana, T., Shinke, R., and Nishira, H., Purification and Characterization of Catechol 1,2-Dioxygenase from Aniline-Assimilating Rhodococcus erythropolis AN-13, Agric. Biol. Chem., 1984, vol. 48, pp. 2087–2095.

    CAS  Google Scholar 

  73. Strachan, P.D., Freer, A.A., and Fewson, C.A., Purification and Characterization of Catechol 1,2-Dioxygenase from Rhodococcus rhodochrous NCIMB 13259 and Cloning and Sequencing of Its catA Gene, Biochem. J., 1998, vol. 333,part 3, pp. 741–747.

    PubMed  CAS  Google Scholar 

  74. Cha, C.-J., Cain, R.B., and Bruce, N.C., The Modified β-Ketoadipatej Pathway in Rhodococcus rhodochrous N75: Enzymology of 3-Methylmuconolactone Metabolism, J. Bacteriol., 1998, vol. 180, no. 24, pp. 6668–6673.

    PubMed  CAS  Google Scholar 

  75. Moiseeva, O.V., Belova, O.V., Solyanikova, I.P., Schlomann, M., and Golovleva, L.A., Enzymes of a Novel Modified ortho-Pathway of Rhodococcus opacus 1CP Utilizing 2-Chlorophenol, Biochemistry (Moscow) (Engl. Transl.), 2001, vol. 66, no. 5, pp. 548–555.

    CAS  Google Scholar 

  76. Maltseva, O.V., Solyanikova, I.P., and Golovleva, L.A., Chlorocatechol 1,2-Dioxygenase from Rhodococcus erythropolis 1CP. Kinetic and Immunochemical Comparison with Analogous Enzymes from Gram-Negative Strains, Eur. J. Biochem., 1994, vol. 226, no. 3, pp. 1053–1061.

    PubMed  CAS  Google Scholar 

  77. van der Meer, J.R., Eggen, R.I.L., Zehnder, A.J.B., and de Vos, W.M., Sequence Analysis of the Pseudomonas sp. Strain P51 tcb Gene Cluster, Which Encodes Metabolism of Chlorinated Catechols: Evidence for Specialization of Catechol 1,2-Dioxygenases for Chlorinated Substrates, J. Bacteriol., 1991, vol. 173, no. 8, pp. 2425–2434.

    PubMed  Google Scholar 

  78. Frantz, B. and Chakrabarty, A.M., Organization and Nucleotide Sequence Determination of a Gene Cluster Involved in 3-Chlorocatechol Degradation, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, no. 13, pp. 4460–4464.

    PubMed  CAS  Google Scholar 

  79. Frantz, B., Ngai, K.-L., Chatterjee, D.K., Ornston, L.N., and Chakrabarty, A.M., Nucleotide Sequence and Expression of clcD, a Plasmid-Borne Dienelactone Hydrolase Gene from Pseudomonas sp. Strain B13, J. Bacteriol., 1987, vol. 169, no. 2, pp. 704–709.

    PubMed  CAS  Google Scholar 

  80. Ghosal, D., You, I.-S., Chatterjee, D.K., and Chakrabarty, A.M., Genes Specifying Degradation of 3-Chlorobenzoic Acid in Plasmids pAC27 and pJP4, Proc. Natl. Acad. Sci. USA, 1985, vol. 82, no. 6, pp. 1638–1642.

    PubMed  CAS  Google Scholar 

  81. Ngai, K-L. and Ornston, L.N., Abundant Expression of Pseudomonas Genes for Chlorocatechol Metabolism, J. Bacteriol., 1988, vol. 170, no. 5, pp. 2412–2413.

    PubMed  CAS  Google Scholar 

  82. Schmidt, E., Remberg, G., and Knackmuss, H.-J., Chemical Structure and Biodegradability of Halogenated Aromatic Compounds. Halogenated Muconic Acids as Intermediates, Biochem. J., 1980, vol. 192,part 1, pp. 331–337.

    PubMed  CAS  Google Scholar 

  83. Schmidt, E. and Knackmuss, H.-J., Chemical Structure and Biodegradability of Halogenated Aromatic Compounds. Conversion of Chlorinated Muconic Acids into Maleylacetic Acid, Biochem. J., 1980, vol. 192,part 1, pp. 339–347.

    PubMed  CAS  Google Scholar 

  84. Vollmer, M.D., Fischer, P., Knackmuss, H.-J., and Schlömann, M., Inability of Muconate Cycloisomerases to Cause Dehalogenation During Conversion of 2-Chloro-cis, cis-Muconate, J. Bacteriol., 1994, vol. 176, no. 14, pp. 4366–4375.

    PubMed  CAS  Google Scholar 

  85. Vollmer, M.D., Hoier, H., Hecht, H.-J., Schell, U., Groning, J., Goldman, A., and Schlömann, M., Substrate Specificity of and Product Formation by Muconate Cycloisomerases: An Analysis of Wild-Type Enzymes and Engineered Variants, Appl. Environ. Microbiol., 1998, vol. 64, no. 9, pp. 3290–3299.

    PubMed  CAS  Google Scholar 

  86. Vollmer, M.D., Schell, U., Seibert, V., Lakner, S., and Schlömann, M., Substrate Specificities of the Chloromuconate Cycloisomerases from Pseudomonas sp. B13, Ralstonia eutropha JMP134 and Pseudomonas sp. P51, Appl. Microbiol. Biotechnol., 1999, vol. 51, no. 5, pp. 598–605.

    PubMed  CAS  Google Scholar 

  87. Vollmer, M. D. and Schlömann, M., Conversion of 2-Chloro-cis,cis-Muconate and Its Metabolites 2-Chloro- and 5-Chloromuconolactone by Chloromuconate Cycloisomerases of pJP4 and pAC27, J. Bacteriol., 1995, vol. 177, no. 10, pp. 2938–2941.

    PubMed  CAS  Google Scholar 

  88. Solyanikova, I.P., Maltseva, O.V., Vollmer, M.D., Golovleva, L.A., and Schlömann, M., Characterization of Muconate and Chloromuconate Cycloisomerase from Rhodococcus opacus 1CP: Indications for Functionally Convergent Evolution among Bacterial Cycloisomerases, J. Bacteriol., 1995, vol. 177, no. 10, pp. 2821–2826.

    PubMed  CAS  Google Scholar 

  89. Maltseva, O.V., Solyanikova, I.P., Golovleva, L.A., Schlömann, M., and Knackmuss, H.-J., Dienelactone Hydrolase from Rhodococcus opacus 1CP: Purification and Properties, Arch. Microbiol., 1994, vol. 162, no. 5, pp. 368–374.

    CAS  Google Scholar 

  90. Seibert, V., Kourbatova, E.M., Golovleva, L.A., and Schlömann, M., Characterization of the Maleylacetate Reductase MacA of Rhodococcus opacus 1CP and Evidence for the Presence of an Isofunctional Enzyme, J. Bacteriol., 1998, vol. 180, no. 14, pp. 3503–3508.

    PubMed  CAS  Google Scholar 

  91. Eulberg, D., Kourbatova, E.M., Golovleva, L.A., and Schlömann, M., Evolutionary Relationship between Chlorocatechol Catabolic Genes from Rhodococcus opacus 1CP and Their Counterparts in Proteobacteria: Sequence Divergence and Functional Convergence, J. Bacteriol., 1998, vol. 180, no. 5, pp. 1082–1094.

    PubMed  CAS  Google Scholar 

  92. Ferraroni, M., Tariffa, M.V.R., Briganti, F., Scozzafava, A., Mangano, S., Solyanikova, I.P., Kolomytseva, M.P., and Golovleva, L.A., 4-Chlorocatechol Dipoxygenase from the Chlorophenol-Utilizing Gram-Positive Rhodococcus opacus 1CP: Crystallization and Preliminary Crystallographic Analysis, Acta Crystallographica, D58, 2002, pp. 1074–1076.

  93. Solyanikova, I.P. and Golovleva, L.A., Bacterial Degradation of Chlorophenols: Pathways, Biochemical and Genetic Aspects, J. Environ. Sci. Health, B39, 2004, no. 2, pp. 333–351.

    CAS  Google Scholar 

  94. Kuhm, A.E., Schlömann, M., Knackmuss, H.-J., and Pieper, D.H., Purification and Characterization of Dichloromuconate Cycloisomerase from Alcaligenes eutrophus JMP 134, Biochem. J., 1990, vol. 266,part 3, pp. 877–883.

    PubMed  CAS  Google Scholar 

  95. Kaulmann, U., Kaschabek, S. R., and Schlömann, M., Mechanism of Chloride Elimination from 3-Chloro- and 2,4-Dichloro-cis,cis-Muconate: New Insight Obtained from Analysis of Muconate Cycloisomerase Variant CatB-K169A, J. Bacteriol., 2001, vol. 183, no. 15, pp. 4551–4561.

    PubMed  CAS  Google Scholar 

  96. Moiseeva, O.V., Solyanikova, I.P., Kaschabek, S., Thiel, M., Golovleva, L.A., and Schlömann, M., A New Modified ortho-Cleavage Pathway of 2-Chlorophenol Degradation by Rhodococcus opacus 1CP: Genetic and Biochemical Evidences, J. Bacteriol., 2002, vol. 184, no. 19, pp. 5282–5292.

    PubMed  CAS  Google Scholar 

  97. Seibert, V., Stadler-Fritzsche, K., and Schlömann, M., Purification and Characterization of Maleylacetate Reductase from Alcaligenes eutrophus JMP 134 (pJP4), J. Bacteriol., 1993, vol. 175, no. 21, pp. 6745–6754.

    PubMed  CAS  Google Scholar 

  98. Kaschabek, S. and Reineke, W., Maleylacetate Reductase of Pseudomonas sp. Strain B13: Specificity of Substrate Conversion and Halide Elimination, J. Bacteriol., 1995, vol. 177, no. 2, pp. 320–325.

    PubMed  CAS  Google Scholar 

  99. Travkin, V.M., Lin’ko, E.V., and Golovleva, L.A., Purification and Properties of Maleylacetate Reductase from Nocardioides simplex 3E Utilizing Herbicides 2,4-D and 2,4,5-T, Biochemistry (Moscow) (Engl. Transl.), 1999, vol. 64, no. 6, pp. 751–757.

    Google Scholar 

  100. Kaschabek, S. and Reineke, W., Degradation of Chloroaromatics: Purification and Characterization of Maleylacetate Reductase from Pseudomonas sp. Strain B13, J. Bacteriol., 1993, vol. 175, no. 19, pp. 6075–6081.

    PubMed  CAS  Google Scholar 

  101. Kleska, G.M. and Gibson, D.T., Inhibition of Catechol 2,3-Dioxygenase from Pseudomonas putida by 3-Chlorocatechol, Appl. Environ. Microbiol., 1981, vol. 41, no. 5, pp. 1159–1165.

    Google Scholar 

  102. Bartels, I., Knackmuss, H.-J., and Reineke, W., Suicide Inactivation of Catechol 2,3-Dioxygenase from Pseudomonas putida mt-2 by 3-Halocatechols, Appl. Environ. Microbiol., 1984, vol. 47, no. 3, pp. 500–505.

    PubMed  CAS  Google Scholar 

  103. Reineke, W. and Knackmuss, H.-J., Hybrid Pathway for Chlorobenzoate Metabolism in Pseudomonas sp. B13 Derivatives, J. Bacteriol., 1980, vol. 142, no. 2, pp. 467–473.

    PubMed  CAS  Google Scholar 

  104. Wieser, M., Eberspächer, J., Vogler, B., and Lingens, F., Metabolism of 4-Dichlorophenol by Azotobacter sp. Strain GPl: Structure of the meta Cleavage Product of 4-Chlorocatechol, FEMS Microbiol. Lett., 1994, vol. 116, no. 1, pp. 73–78.

    PubMed  CAS  Google Scholar 

  105. Kaschabek, S.R., Kasberg, T., Müller, D., Mars, A.E., Janssen, D.B., and Reineke, W., Degradation of Chloroaromatics: Purification and Characterization of a Novel Type of Chlorocatechol 2,3-Dioxygenase of Pseudomonas putida GJ31, J. Bacteriol., 1998, vol. 180, no. 2. pp. 296–302.

    PubMed  CAS  Google Scholar 

  106. Pieper, D.H., Engesser, K.-H., Don, R.H., Timmis, K.N., and Knackmuss, H.-J., Modified ortho-Cleavage Pathway in Alcaligenes eutrophus JMP134 for the Degradation of 4-Methylcatechol, FEMS Microbiol. Lett., 1985, vol. 29, no. 1–2, pp. 63–67.

    CAS  Google Scholar 

  107. Pieper, D.H., Stadler-Fritzsche, K., Knackmuss, H.-J., Engesser, K.-H., Bruce, N.C., and Cain, R.B., Purification and Characterization of 4-Methylmuconolactone Methylisomerase, a Novel Enzyme of the Modified 3-Oxoadipate Pathway in the Gram-Negative Bacterium Alcaligenes eutrophus JMP134, Biochem. J., 1990, vol. 271,part 2, pp. 529–534.

    PubMed  CAS  Google Scholar 

  108. Khmel, I.A., Quorum-Sensing Regulation of Gene Expression: Fundamental and Applied Aspects and the Role in Bacterium Communication, Microbiology (Moscow, Engl. Transl.), 2006, vol. 75, pp. 457–464.

    CAS  Google Scholar 

  109. Nikolaev, Yu.A. and Plakunov, V.K., Biofilm — “a City of Microbes” or an Analogue of Multicellular Organisms? Microbiology (Moscow, Engl. Transl.), 2007, vol. 76, pp. 149–163.

    Google Scholar 

  110. Solyanikova, I.P. and Golovleva L.A., Means for Phenol Decomposition, Patent RUNo 2405036. C2, 2010, Bull. 33.

  111. Begona, P.M., Hidalgo, A., Serra, J.L., and Llama, M.J., Degradation of Phenol by Rhodococcus erythropolis UPV-1 Immobilized on Biolite in a Packed-Bed Reactor, J. Biotechnol., 2002, vol. 97, no. 1, pp. 1–11.

    Google Scholar 

  112. Prieto, M.B., Hidalgo, A., Rodriguez-Fernandez, C., Serra, J.L., and Llama, M.J., Biodegradation of Phenol in Synthetic and Industrial Wastewater by Rhodococcus erythropolis UPV-1 Immobilized in an Air-Stirred Reactor with Clarifier, Appl. Microbiol. Biotechnol., 2002, vol. 58, no. 6, pp. 853–859.

    PubMed  CAS  Google Scholar 

  113. Genovese, M., Denaro, R., Cappello, S., Di Marco, G., La Spada, G., Giuliano, L., Genovese, L., and Yakimov, M.M., Bioremediation of Benzene, Toluene, Ethylbenzene, Xylenes-Contaminated Soil: a Biopile Pilot Experiment, J. Appl. Microbiol., 2008, vol. 105, no. 5, pp. 1694–1702.

    PubMed  CAS  Google Scholar 

  114. Xu, Y.X., Sun, J.Q., Li, X.H., Li, S.P., and Chen, Y., Study on Cooperating Degradation of Cypermethrin and 3-Phenoxybenzoic Acid by Two Bacteria Strains, Wei Sheng Wu Xue Bao, 2007, vol. 47, pp. 834–837.

    PubMed  CAS  Google Scholar 

  115. Przybulewska, K., Wieczorek, A., Nowak, A., and Pochrzaszcz, M., The Isolation of Microorganisms Capable of Phenol Degradation, Pol. J. Microbiol., 2006, vol. 55, pp. 63–67.

    PubMed  CAS  Google Scholar 

  116. Filonov, A., Ovchinnikova, A., Vetrova, A., Nechaeva, L., Puntus, I., Akhmetov, L., Zabelin, V., and Boronin A., Remediation of Oil-Spilled Territories Using a Biopreparation “MicroBac”, a Consortium of Plasmid-Bearing Strains “V&O” and Associated Plants, Proc. ISTC Workshop at the International Conference on Contaminated Soil, ConSoil 2010, Salzburg, Austria, September 2010, pp. 222–223.

  117. Nechaeva, L.A., Filonov, A.E., Akhmetov, L.I., Puntus, I.F., and Boronin, A.M., Stimulation of Microbial Decomposition of Oil in Soil by Introduction of Bacterial Association and Mineral Fertilizer under Laboratory and Natural Conditions, Biotekhnologiya (Moscow), 2009, no. 1, pp. 64–70.

  118. Filonov, A.E., Petrikov, K.V., Jakshina, T.V., Puntus, I.F., Vlasova, E.P., Nechaeva, I.A., and Samoilenko, V.A., Modes of Separate an Co-Cultivations of Pseudomonas and Rhodococcus Oil-Decomposing Strains, Biotekhnologiya (Moscow), 2008, no. 6, pp. 80–85.

  119. Filonov, A.E., Nechaeva, I.A., Akhmetov, L.I., Gafarov, A.B., Puntus, I.F., and Boronin, A.M., Biodegradation of Crude Oil by Introduced Psychrotrophic and Indigenous Microbial Association under Laboratory and Field Conditions in Soils of Moscow Region, Russia, Proc. 30th Arctic and Marine Oilspill Program (AMOP) Technical Seminar, vol. 1, Edmonton, Canada, June 2007, pp. 319–329.

    Google Scholar 

  120. Filonov, A.E., Kosheleva, I.A., Shkidchenko, A.N., Pirchenkova, LA., Puntus, I.F., Gafarov, A.B., and Boronin, A.M., Association of Bacterial Strains Producing Bioemulsifiers for Crude Oil Degradation in Soils, Fresh- and Sea-Water, Patent RU no. 2312891, 2006.

  121. Filonov, A.E., Kosheleva, I.A., Samoilenko, V.A., Shkidchenko, A.N., Nechaeva, I.A., Puntus, I.F., Gafarov, A.B., Jakshina, T.V., Boronin, A.M., and Petrikov, K.V., Biopreparation for Crude Oil Contaminated Soil Purification, Method for Obtaining and Application, Patent RU no. 2378060, 2007.

  122. Petrikov, K.V., Vlasova, E.P., Vetrova, A.A., Ovchinnikova, A.A., Ponamoreva, O.N., Alferov, V.A., Puntus, I.F., and Filonov, A.E., The Dry Form of a Biological Preparation for Treatment of Oil Pollutions and Study of Its Properties during Long-Term Storage, Bull. Tula State University. Natural Sci., 2010, vol. 1, pp. 186–195.

    Google Scholar 

  123. Duarte, G.F., Rosado, A.S., Seldin, L., de Araujo, W., and van Elsas, J.D., Analysis of Bacterial Community Structure in Sulfurous-Oil-Containing Soils and Detection of Species Carrying Dibenzothiophene Desulfurization (dsz) Genes, Appl. Environ. Microbiol., 2001, vol. 67, no. 3, pp. 1052–62.

    PubMed  CAS  Google Scholar 

  124. Reineke, W., Development of Hybrid Strains for the Mineralization of Chloroaromatics by Patchwork Assembly, Annu. Rev. Microbiol., 1998, vol. 52, pp. 287–331.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Golovleva.

Additional information

Published in Russian in Mikrobiologiya, 2011, Vol. 80, No. 5, pp. 579–594.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solyanikova, I., Golovleva, L. Biochemical features of the degradation of pollutants by Rhodococcus as a basis for contaminated wastewater and soil cleanup. Microbiology 80, 591–607 (2011). https://doi.org/10.1134/S0026261711050158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261711050158

Keywords

Navigation