Skip to main content
Log in

Structural and Crystal-Chemical Features and Rb–Sr Age of Globular Glauconite in the Ust-Il’ya Formation (Lower Riphean, Anabar Uplift)

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

For the first time, mineralogical, structural, crystal-chemical and isotope-geochronological data were obtained for a glauconite sample from the Lower Riphean Ust-Il’ya Formation on the Magan River (western slope of the Anabar Massif, northern Siberia). It has been established that glauconite from the lenticular layer of friable glauconitite (glauconite grains ≥80%) contains two populations of mixed-layer crystals, in which mica layers (93%) alternate with either smectite-type (7%) or vermiculite-type layers (7%) with the short-range order factor R = 3. The ratio KAl = (VIAl / (VIFe3+ + VIAl) equal to 0.45 allows identifying the micaceous mineral as glauconite with the unit-cell parameter b = 9.065 Å and K2O content of 8.29%. Comparison of new data with the previously obtained mineralogical and crystal-chemical characteristics of Ust-Il’ya glauconites from the Kotuikan River section (2.5 km above the Il’ya River mouth), located 65 km south of the Magan River section, showed both similarities and differences. Analysis of the crystal-chemical heterogeneity of Kotuikan glauconite samples from rocks of different lithological types revealed peculiarities in the distribution of individual mica varieties composing the glauconite globules. Isotopic dating of glauconite from the Magan River section was performed in combination with simulation of the distribution of octahedral cations and comparison of the results obtained with Mössbauer and infrared (IR) spectroscopy data. Such an approach combined with the mineralogical and crystal-chemical analyses contributes to correct interpretation of the stratigraphic significance of isotope data. The results obtained provide grounds for the conclusion that isotopic dates of glauconite from the Magan section (1474 ± 21 Ma) coincides within the error limit with the earlier Rb–Sr and K–Ar dating of the Ust-Il’ya Formation (1485 ± 13 and 1459 ± 20 Ma, respectively) based on the glauconite in the Kotuikan section (Zaitseva et al., 2016). The former value marks the stage of early diagenesis of sediments and is suitable for estimating the age of this formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Besson, G. and Drits, V.A., Refined relationships between chemical composition of dioctahedral fine-dispersed mica minerals and their infrared spectra in the OH stretching region. Part I. Identification of the stretching bands, Clay. Clay Miner., 1997a, vol. 45, p. 158.

    Article  Google Scholar 

  2. Besson, G. and Drits, V.A., Refined relationship between chemical composition of dioctahedral fine-dispersed mica minerals and their infrared spectra in the OH stretching region. Part II. The main factors affecting OH vibration and quantitative analysis, Clay. Clay Miner., 1997b, vol. 45, p. 170.

    Article  Google Scholar 

  3. Dainyak, L.G. and Drits, V.A., Interpretation of the Mössbauer spectra of nontronite, celadonite, and glauconite, Clay. Clay Miner., 1987, vol. 35, pp. 363−372.

    Article  Google Scholar 

  4. Dainyak, L.G., Drits, V.A., and Lindgreen, H., Computer simulation of octahedral cation distribution and interpretation of the Mössbauer Fe2+ components in dioctahedral trans-vacant micas, Eur. J. Mineral., 2004, vol. 16, pp. 451−468.

    Article  Google Scholar 

  5. Dainyak, L.G., Rusakov, V.S., Sukhorukov, I.A., et al., An improved model for the interpretation of Mössbauer spectra of dioctahedral 2:1 trans-vacant Fe-rich micas: refinement of parameters, Eur. J. Mineral., 2009, vol. 21, p. 995.

    Article  Google Scholar 

  6. Dainyak, L.G., Rusakov, V.S., Sukhorukov, I.A., and Drits, V.A., Octahedral cation distribution in glauconites from southern Urals by combination of crystal-chemical model and quasi-continuous model-independent quadrupole splitting distributions (QSD) fitted to their Mössbauer spectra, Eur. J. Mineral., 2013, vol. 25, p. 405.

    Article  Google Scholar 

  7. Drits, V.A. and Sakharov, B.A., Rentgenostrukturnyi analiz smeshanosloinykh mineralov (X-ray Structural Analysis of the Mixed-Layer Minerals), Moscow: Nauka, 1976.

  8. Drits, V.A., Kameneva, M.Yu., Sakharov, B.A., et al., Problemy opredeleniya real’noi struktury glaukonitov i rodstvennykh tonkozernistykh fillosilikatov (Problems in Determining the Real Structure of Glauconites and Cognate Fine-Grained Phyllosilicates), Novosibirsk: Nauka, 1993.

  9. Drits, V.A., Ivanovskaya, T.A., Sakharov, B.A., et al., Nature of the structural and crystal-chemical heterogeneity of the Mg-rich glauconite (Riphean, Anabar Uplift), Lithol. Miner. Resour., 2010, no. 6, pp. 555–576.

  10. Drits, V.A., Sakharov, B.A., Ivanovskaya, T.A., and Pokrovskaya, E.V., Crystal-chemical microheterogeneity of Precambrian globular dioctahedral mica minerals, Lithol. Miner. Resour., 2013, no. 6, pp. 489–515.

  11. Ericsson, T. and Wäppling, R., Texture effects in 3/2-1/2 Mössbauer spectra, J. Phys. Colloq., 1976, vol. 37, no. C6, pp. 719−723.

    Article  Google Scholar 

  12. Golubkova, E.Yu., Zaitseva, T.S., Kuznetsov, A.B., et al., Microfossils and Rb-Sr age of glauconite in the key section of the Upper Proterozoic of the northeastern part of the Russian Plate (Keltmen–1 Borehole), Dokl. Earth Sci., 2015, vol. 462, no. 4, pp. 547−551.

    Article  Google Scholar 

  13. Gorokhov, I.M., Semikhatov, M.S., Drubetskoi, E.R., et al., Rb–Sr and K–Ar age of sedimentary geochronometers of the Lower Riphean in the Anabar massif, Dokl. Akad. Nauk SSSR, Ser. Geol., 1991, no. 7, pp. 17–32.

  14. Gorokhov, I.M., Yakovlev, O.V., Semikhatov, M.A., and Ivanovskaya, T.A., Rb–Sr and K–Ar age of Mössbauer spectra of globular layer silicates of the glauconite series: Middle Riphean Debengda Formation in the Olenek Uplift, northern Siberia, Lithol. Miner. Resour., 1995, no. 6, pp. 613−629.

  15. Guggenheim, S., Adams, J.M., Bain, D.C., et al., Summary of recommendations of Nomenclature Committees relevant to clay mineralogy: report of the Association Internationale Pour L’etude des Argiles (AIPEA) nomenclature committee for 2006, Clay. Clay Miner., 2006, vol. 54, p. 761.

    Article  Google Scholar 

  16. Ivanovskaya, T.A. and Tsipurskii, S.I., First finding of the globular glauconite in the Lower Riphean (Anabar Uplift), Litol. Polezn. Iskop., 1990, no. 3, pp. 110−121.

  17. Ivanovskaya, T.A., Zaitseva, T.S., Zvyagina, B.B., and Sakharov, B.A., Crystal-chemical peculiarities of globular layer silicates of the glauconite–illite composition (Upper Proterozoic, northern Siberia), Lithol. Miner. Resour., 2012, no. 6, pp. 491−413.

  18. Ivanovskaya, T.A., Zvyagina, B.B., Sakharov, B.A., et al., Globular layer silicates of the glauconite–illite composition in Upper Proterozoic and Lower Cambrian rocks, Lithol. Miner. Resour., 2015, no. 6, pp. 452–477

  19. Ivanovskaya, T.A., Zvyagina, B.B., and Zaitseva, T.S., Secondary alterations of globular and platy phyllosilicates of the glauconite–illite series in the Precambrian and Vendian–Cambrian rocks, Lithol. Miner. Resour., 2017, no. 5, pp. 369−391.

  20. Kossovskaya, A.G. and Drits, V.A., Issues of the crystal chemical and genetic classification of layer minerals in sedimentary rocks, in Epigenez i ego mineral’nye indikatory (Epigenesis and Its Mineral Indicators), Kossovskaya, A.G., Ed., Moscow: Nauka, 1971.

  21. McIntyre, G.A., Brooks, C., Compston, W., and Turek, A., The statistical assessment of Rb−Sr isochrons, J. Geophys. Res., 1966, vol. 71, no. 22, pp. 5459−5468.

    Article  Google Scholar 

  22. Nikolaeva, I.V., Mineraly gruppy glaukonita v osadochnykh formatsiyakh (Glauconite Group Minerals in Sedimentary Formations), Novosibirsk: Nauka, 1977.

  23. Rieder, M., Cavazzini, G., D’yakonov, Y., et al., Nomenclature of the micas, Can. Mineral., 1998, vol. 36, pp. 41−48.

    Google Scholar 

  24. Sakharov, B.A., Besson, G., Drits, V.A., et al., X-ray study of the nature of stacking faults in the structure of glauconites, Clay Miner., 1990, vol. 25, p. 419−435.

    Article  Google Scholar 

  25. Sakharov, B.A., Lindgreen, H., Salyn, A.L., and Drits, V.A., Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting, Clay. Clay Miner., 1999, vol. 47, pp. 555‒566.

    Article  Google Scholar 

  26. Sakharov, B.A. and Lanson, B., X-ray identification of mixed-layer structures in Handbook of Clay Science. Part B. Techniques and Applications, Bergaya, F. and Lagaly, G., Eds., Amsterdam: Oxford: Elsevier, 2013, Chapter 2.3. Modeling of diffraction effects, pp. 51−135.

  27. Sakharov, B.A. and Drits, V.A., Technique for determination of the content of smectite layers in the dispersed dioctahedral K-bearing micaceous minerals, Lithol. Miner. Resour., 2015, no. 1, pp. 50−79.

  28. Sergeev, V.N., Okremnennye mikrofossilii dokembriya: priroda, klassifikatsiya i biostratigraficheskoe znachenie (Precambrian Silicified Microfossils: Nature, Classification, and Biostratigraphic Significance), Moscow: GEOS, 2006.

  29. Sergeev, V.N., Vorob’eva, N.G., and Petrov, P.Yu., The biostratigraphic conundrum of Siberia: Do true Tonian–Cryogenian microfossils occur in Mesoproterozoic rocks?, Precambrian Res., 2017, vol. 299, pp. 282−302.

    Article  Google Scholar 

  30. Slonimskaya, M.V., Besson, G., Dainyak, L.G., Tchoubar, C., and Drits, V.A., Interpretation of the IR spectra of celadonites and glauconites in the region of OH-stretching frequencies, Clay Miner., 1986, vol. 21, p. 377.

    Article  Google Scholar 

  31. Smoliar-Zviagina, B.B., Relationships between structural parameters and chemical composition of micas, Clay Miner., 1993, vol. 25, pp. 603‒624.

    Article  Google Scholar 

  32. Veis, A.F. and Petrov, P.Yu., Main features of the facies-ecological distribution of microfossils in Riphean basins of Siberia, Stratigr. Geol. Korrel., 1994, vol. 2, no. 5, pp. 97−129.

    Google Scholar 

  33. Veis, A.F. and Vorob’eva, N.G., Riphean and Vendian microfossils in the Anabar Massif, Izv. Akad. Nauk SSSR, Ser. Geol., 1992, no. 1, pp. 114‒130.

  34. Veis, A.F., Petrov, P.Yu., and Vorob’eva, N.G., Geochronological and biostratigraphic approaches to reconstruction of Precambrian biota evolution: New finds of microfossils in Riphean sections on the western slope of the Anabar Uplift, Dokl. Earth Sci., 2001, vol. 378, no. 4, pp. 413−419.

    Google Scholar 

  35. Zaitseva, T.S., Gorokhov, I.M., Ivanovskaya, T.A., et al., Mössbauer characteristics, mineralogy and isotopic age (Rb–Sr, K–Ar) of Upper Riphean glauconites from the Uk Formation, the southern Urals, Stratigr. Geol. Correl. 2008, vol. 16, no. 3, pp. 3−25.

    Article  Google Scholar 

  36. Zaitseva, T.S., Semikhatov, M.A., Gorokhov, I.M., et al., Isotopic geochronology and biostratigraphy of Riphean deposits of the Anabar Massif, North Siberia, Stratigr. Geol. Correl., 2016, vol. 24, no. 6, pp. 549−574.

    Article  Google Scholar 

  37. Zaitseva, T.S., Gorokhov, I.M., Semikhatov, M.A., et al., Rb-Sr and K-Ar age of globular phyllosilicates and biostratigraphy of the Riphean deposits of the Olenek Uplift (North Siberia), Stratigr. Geol. Correl., 2017, vol. 25, no. 6, pp. 581−606.

    Article  Google Scholar 

  38. Zaitseva, T.S., Gorokhov, I.M., Semikhatov, M.A., et al., “Rejuvenated” globular phyllosilicates in the Riphean deposits of the Olenek Uplift (North Siberia): Structural identification and geological significance of Rb–Sr and K–Ar age data, Stratigr. Geol. Correl., 2018, no. 6, pp. 611–633.

  39. Zviagina, B.B., Drits, V.A., Środoń, J., et al., The illite–aluminoceladonite series: distinguishing features and identification criteria from X-ray diffraction and infrared spectroscopy data, Clay. Clay Miner., 2015, vol. 63, pp. 378−394.

    Article  Google Scholar 

  40. Zviagina, B.B., Drits, V.A., Sakharov, B.A., et al., Crystal-chemical regularities and identification criteria in Fe-bearing, K-dioctahedral 1M micas from X-ray diffraction and infrared spectroscopy data, Clay. Clay Miner., 2017, vol. 65, p. 234.

    Article  Google Scholar 

  41. Zviagina, B.B., Drits, V.A., and Dorzhieva, O.V., Distinguishing features and identification criteria for K-dioctahedral 1M micas (illite-aluminoceladonite and illite-glauconite-celadonite series) from middle-infrared spectroscopy data, Minerals, 2020, vol. 10, p. 153.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank P.Yu. Petrov for kindly placing the glauconitite at our disposal; N.V. Gor’kova and V.V. Mikheev for help in the study of microtextures of glauconite grains in sample 7143 and for the accomplishment of semiquantitative analysis of the cation composition therein; and M.V. Rudchenko for the chemical analysis with determination of the water content in grains of this sample.

Funding

This work was fulfilled under State Task Projects of the Geological Institute, Russian Academy of Sciences, and the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Zaitseva.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitseva, T.S., Ivanovskaya, T.A., Sakharov, B.A. et al. Structural and Crystal-Chemical Features and Rb–Sr Age of Globular Glauconite in the Ust-Il’ya Formation (Lower Riphean, Anabar Uplift). Lithol Miner Resour 55, 468–485 (2020). https://doi.org/10.1134/S0024490220060103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490220060103

Keywords:

Navigation