Skip to main content
Log in

Influence of Soot Particles on the Gas-Phase Methane Conversion into Synthesis Gas: The Role of H2O and CO2 Additives

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The influence of the formation of microheterogeneous soot particles on the gas-phase conversion of rich mixtures of methane with oxygen into synthesis gas in a temperature range from 1500 to 1800 K under the conditions of an adiabatic reactor was studied by kinetic modeling. The effect of CO2 and H2O additives on this process was studied. The appearance of soot particles was observed in rich mixtures, starting from the fuel excess factor ϕ = 3.33. At relatively low temperatures of ~1500 K, a small amount of microheterogeneous soot particles was formed, which did not significantly affect other components of the reacting system. A noticeable effect of soot particles at this temperature was observed at a higher value of ϕ = 8.0. This was most clearly manifested in the temperature profile of the process, in which two maximums were observed at times of about 0.01 and 0.1 s upon the addition of water to the reacting mixture. In the case of CO2 additions, the second maximum in the temperature profile was almost not pronounced. A complex temperature profile led to the appearance of the second concentration maximum of hydroxyl radicals OH at times of ~0.1 s. The addition of H2O and CO2 made it possible to vary the H2/CO ratio in the synthesis gas over a wide range, which is necessary for the synthesis of various products. Because the added CO2 under these conditions was actually involved in the chemical process of obtaining synthesis gas, its partial recirculation from the conversion products made it possible to reduce its emission in the production of synthesis gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Arutyunov, V.S., Golubeva, I.A., Eliseev, O.L., and Zhagfarov, F.G., Tekhnologiya pererabotki uglevodorodnykh gazov. Uchebnik dlya vuzov (Hydrocarbon Gas Processing Technology. Textbook for Universities), Moscow: Yurait, 2020.

  2. Arutyunov, V.S., Hydrogen energy: Significance, sources, problems, prospects (a review), Pet. Chem., 2022, vol. 62, no. 4, p. 583. https://doi.org/10.1134/S0965544122040065

    Article  CAS  Google Scholar 

  3. Nikitin, A., Ozersky, A., Savchenko, V., Sedov, I., Shmelev, V., Arutyunov, V., Matrix conversion of natural gas to syngas: The main parameters of the process and possible applications, Chem. Eng. J., 2019, vol. 377, p. 120883. https://doi.org/10.1016/j.cej.2019.01.162

    Article  CAS  Google Scholar 

  4. Aldoshin, S.M., Arutyunov, V.S., Savchenko, V.I., Sedov, I.V., Nikitin, A.V., and Fokin, I.G., Physical methods for studying chemical reactions: New non-catalytic methods for processing hydrocarbon gases, Russ. J. Phys. Chem. B, 2021, vol. 14, no. 5, p. 46. https://doi.org/10.1134/S1990793121030039

    Article  Google Scholar 

  5. Savchenko, V.I., Zimin, Ya.S., Nikitin, A.V., Sedov, I.V., and Arutyunov, V.S., Utilization of CO2 in non-catalytic dry reforming of C1–C4 hydrocarbons, J. CO 2 Util., 2021, vol. 47, p. 101490. https://doi.org/10.1016/j.jcou.2021.101490

  6. Savchenko, V.I., Nikitin, A.V., Zimin, Ya.S., Ozerskii, A.V., Sedov, I.V., and Arutyunov, V.S., Impact of post-flame processes on the hydrogen yield in matrix partial oxidation reformer, Chem. Eng. Res. Des., 2021, vol. 175, p. 250. https://doi.org/10.1016/j.cherd.2021.09.009

    Article  CAS  Google Scholar 

  7. Savchenko, V.I., Zimin, Ya.S., Buzillo, E., Nikitin, A.V., Sedov, I.V., and Arutyunov, V.S., Equilibrium composition of products formed by non-catalytic conversion of hydrocarbons, Pet. Chem., 2022, vol. 62, no. 3, p. 375. https://doi.org/10.1134/S0965544122050048

    Article  Google Scholar 

  8. Agafonov, G.L., Bilera, I.V., Vlasov, P.A., Kolbanovskii, Yu.A., Smirnov, V.N., and Tereza, A.M., Soot formation during the pyrolysis and oxidation of acetylene and ethylene in shock waves, Kinet. Catal., 2015, vol. 56, no. 1, p. 15. https://doi.org/10.7868/S0453881115010013

    Article  Google Scholar 

  9. Akhun’yanov, A.R., Arutyunov, A.V., Vlasov, P.A., Smirnov, V.N., and Arutyunov, V.S., Effect of CO2 additives on the non-catalytic conversion of natural gas into synthesis gas and hydrogen, Kinet. Katal., 2023, vol. 64, no. 2, p. 153. https://doi.org/10.31857/S0453881123020016

    Article  Google Scholar 

  10. Frenklach, M., Computer modeling of infinite reactions sequences: A chemical lumping, Chem. Eng. Sci., 1985, vol. 40, p. 1843.

    Article  CAS  Google Scholar 

  11. Frenklach, M., Taki, S., and Matula, R.A., A conceptual model for soot formation in pyrolysis of aromatic hydrocarbons, Combust. Flame, 1983, vol. 49, p. 275.

    Article  CAS  Google Scholar 

  12. Appel, J., Bockhorn, H., and Frenklach, M., Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons, Combust. Flame, 2000, vol. 121, nos. 1–2, p. 122.

    Article  CAS  Google Scholar 

  13. Wang, H. and Frenklach, M., A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames, Combust. Flame, 1997, vol. 110, nos. 1–2, p. 173.

    Article  CAS  Google Scholar 

  14. Frenklach, M. and Wang, H., Detailed mechanism and modeling of soot particle formation, in Soot Formation in Combustion: Mechanisms and Models, Bockhorn, H., Ed., Springer Series In Chemical Physics, Berlin: Springer, 1994, vol. 59, p. 162.

  15. Richter, H., Granata, S., Green, W.H., and Howard, J.B., Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame, Proc. Combust. Inst., 2005, vol. 30, no. 1, p. 1397.

    Article  Google Scholar 

  16. Deuflhard, P. and Wulkow, M., Computational treatment of polyreaction kinetics by orthogonal polynomials of a discrete variable, Impact Comput. Sci. Eng., 1989, vol. 1, p. 269.

    Article  Google Scholar 

  17. Wulkow, M., The simulation of molecular weight distribution in polyreaction kinetics by discrete Galerkin methods, Macromol. Theory Simul., 1996, vol. 5, p. 393.

    Article  CAS  Google Scholar 

  18. Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., and Law, C.K., USC Mech Version II. High temperature combustion reaction model of H2/CO/C1–C4 compounds. http://ignis.usc.edu/USC-MechII.htm.

  19. Agafonov, G.L., Bilera, I.V., Vlasov, P.A., Zhil’tsova, I.V., Kolbanovskii, Yu.A., Smirnov, V.N., and Tereza, A.M., Unified kinetic model of soot formation in the pyrolysis and oxidation of aliphatic and aromatic hydrocarbons in shock waves, Kinet. Catal., 2016, vol. 57, no. 5, p. 557.

    Article  CAS  Google Scholar 

  20. Skjoth-Rasmussen, M.S., Glarborg, P., Ostberg, M., Johannessen, J.T., Livbjerg, H., Jensen, A.D., and Christensen, T.S., Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor, Combust. Flame, 2004, vol. 136, p. 91.

    Article  CAS  Google Scholar 

  21. Richter, H., Granata, S., Green, W.H., and Howard, J.B., Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame, Proc. Combust. Inst., 2005, vol. 30, p. 1397.

    Article  Google Scholar 

  22. Frenklach, M. and Warnatz, J., Detailed modeling of PAH profiles in a sooting low-pressure acetylene flame, Combust. Sci. Technol., 1987, vol. 51, p. 265.

    Article  CAS  Google Scholar 

  23. Wang, H., Dames, E., Sirjean, B., Sheen, D.A., Tangko, R., Violi, A., A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures. JetSurF Version 2.0, 2010. http://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF2.0/index.htm.

  24. Correa, C., Niemann, H., Schramm, B., and Warnatz, J., Reaction mechanism reduction for higher hydrocarbons by the ILDM method, Proc. Combust. Inst., 2000, vol. 28, p. 1607.

    Article  CAS  Google Scholar 

  25. Hansen, N., Klippenstein, S.J., Westmoreland, P.R., Kasper, T., Kohse-Hoinghaus, K., Wang, J., and Cool, T.A., A combined ab initio and photoionization mass spectrometric study of polyynes in fuel-rich flames, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 366.

    Article  CAS  PubMed  Google Scholar 

  26. Agafonov, G.L., Mikhailov, D.I., Smirnov, V.N., Tereza, A.M., Vlasov, P.A., and Zhiltsova, I.V., Shock tube and modeling study of chemical ionization in the oxidation of acetylene and methane mixtures, Combust. Sci. Technol., 2016, vol. 188, nos. 11–12, p. 1815. https://doi.org/10.1080/00102202.2016.1211861

    Article  CAS  Google Scholar 

  27. Vlasov, P.A., Zhiltsova, I.V., Smirnov, V.N., Tereza, A.M., Agafonov, G.L., and Mikhailov, D.I., Chemical ionization of n-hexane, acetylene, and methane behind reflected shock waves, Combust. Sci. Technol., 2018, vol. 190, no. 1, p. 57. https://doi.org/10.1080/00102202.2017.1374954

    Article  CAS  Google Scholar 

  28. Vlasov, P.A., Akhun’yanov, A.R., and Smirnov, V.N., Experimental studies and simulation of methane pyrolysis and oxidation in reflected shock waves accompanied by soot formation, Kinet. Catal., 2022, vol. 63, no. 2, p. 141. https://doi.org/10.1134/S0023158422020124

    Article  CAS  Google Scholar 

  29. Agafonov, G.L., Borisov, A.A., Smirnov, V.N., Troshin, K.Ya., Vlasov, P.A., and Warnatz, J., Soot formation during pyrolysis of methane and rich methane/oxygen mixtures behind reflected shock waves, Combust. Sci. Technol., 2008, vol. 180, no. 10, p. 1876. https://doi.org/10.1080/00102200802261423

    Article  CAS  Google Scholar 

  30. Agafonov, G.L., Smirnov, V.N., and Vlasov, P.A., A shock-tube and modeling study of soot formation during pyrolysis of propane, propane/toluene and rich propane/oxygen mixtures, Combust. Sci. Technol., 2010, vol. 182, no. 11, p. 1645. https://doi.org/10.1080/00102202.2010.497331

    Article  CAS  Google Scholar 

  31. Agafonov, G.L., Naydenova, I., Vlasov, P.A., and Warnatz, J., Detailed kinetic modeling of soot formation in shock tube pyrolysis and oxidation of toluene and n-heptane, Proc. Combust. Inst., 2007, vol. 31, p. 575. https://doi.org/10.1016/j.proci.2006.07.191

    Article  CAS  Google Scholar 

  32. Naydenova, I., Nullmeier, M., Warnatz, J., and Vlasov, R.A., Detailed kinetic modeling of soot formation during shock-tube pyrolysis of C6H6: Direct comparison with the results of time-resolved laser-induced incandescence (LII) and CW-laser extinction measurements, Combust. Sci. Technol., 2004, vol. 176, p. 1667. https://doi.org/10.1080/00102200490487544

    Article  CAS  Google Scholar 

  33. Vlasov, P.A., Agafonov, G.L., Mikhailov, D.I., Smirnov, V.N., Tereza, A.M., Zhiltsova, I.V., Sychev, A.E., Shchukin, A.S., Khmelenin, D.N., Streletskii, A.N., Borunova, A.B., and Stovbun, S.V., Shock-tube study of the formation of iron, carbon, and iron-carbon binary nanoparticles: Experiment and detailed kinetic simulations, Combust. Sci. Technol., 2019, vol. 191, no. 2, p. 243. https://doi.org/10.1080/00102202.2018.1451995

    Article  CAS  Google Scholar 

  34. Vlasov, P.A. and Warnatz, J., Detailed kinetic modeling of soot formation in hydrocarbon pyrolysis behind shock waves, Proc. Combust. Inst., 2002, vol. 29, p. 2335.

    Article  CAS  Google Scholar 

  35. Agafonov, G.L., Smirnov, V.N., and Vlasov, P.A., Shock tube and modeling study of soot formation during the pyrolysis and oxidation of a number of aliphatic and aromatic hydrocarbons, Proc. Combust. Inst., 2011, vol. 33, p. 625. https://doi.org/10.1016/j.proci.2010.07.089

    Article  CAS  Google Scholar 

  36. Vlasov, P.A. and Varnatts, Yu., Kinetic modeling of soot formation during pyrolysis of various aliphatic and aromatic hydrocarbons in shock waves, Khim. Fiz., 2004, vol. 23, no. 10, p. 42.

    CAS  Google Scholar 

  37. Vlasov, P.A., Varnatts, Yu., and Naidenova, I., Modeling of the kinetic mechanism of soot formation during the oxidation of rich mixtures of n-heptane, methane and propane in shock waves, Khim. Fiz., 2004, vol. 23, no. 11, p. 36.

    CAS  Google Scholar 

  38. Vlasov, P.A., Smirnov, V.N., Tereza, A.M., Agafonov, G.L., Kolbanovskii, Yu.A., Bilera, I.V., Mikhailov, D.I., and Zhil’tsova, I.V., Effect of pressure on soot formation in the pyrolysis of n-hexane and the oxidation of fuel-rich mixtures of n-heptane behind reflected shock waves, Russ. J. Phys. Chem. B, 2016, vol. 10, no. 12, p. 912. https://doi.org/10.1134/S1990793116060282

    Article  CAS  Google Scholar 

  39. Agafonov, G.L., Bilera, I.V., Vlasov, P.A., Kolbanovskii, Yu.A., Smirnov, V.N., and Tereza, A.M., Formation of soot particles in pyrolysis and oxidation of aliphatic and aromatic hydrocarbons: Experiments and detailed kinetic modeling, Russ. J. Phys. Chem. B, 2016, vol. 10, no. 8, p. 587. https://doi.org/10.1134/S1990793116040199

    Article  CAS  Google Scholar 

  40. Agafonov, G.L., Vlasov, P.A., and Smirnov, V.N., Soot formation in the pyrolysis of benzene, methylbenzene, and ethylbenzene in shock waves, Kinet. Catal., 2011, vol. 52, no. 3, p. 358.

    Article  CAS  Google Scholar 

  41. Agafonov, G.L., Smirnov, V.N., and Vlasov, P.A., Effect of iron pentacarbonyl on soot formation behind shock waves, Combust. Sci. Technol., 2012, vol. 184, nos. 10–11, p. 1838. https://doi.org/10.1080/00102202.2012.690644

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out at the Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences and supported by the Russian Science Foundation (grant no. 22-73-00171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Akhunyanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhunyanov, A.R., Vlasov, P.A., Smirnov, V.N. et al. Influence of Soot Particles on the Gas-Phase Methane Conversion into Synthesis Gas: The Role of H2O and CO2 Additives. Kinet Catal 64, 700–715 (2023). https://doi.org/10.1134/S0023158423060010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423060010

Keywords:

Navigation