Skip to main content
Log in

Discrimination between the Homogeneous and Heterogeneous Mechanisms of Catalysis in the Copper- and Ligand-Free Sonogashira Reaction Using Phase Trajectory Analysis

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The paper presents the results of a comparative study of the differential selectivity of the copper- and ligand-free Sonogashira reaction under so-called artificial multiroutness aimed at distinguishing between homogeneous and heterogeneous catalysis mechanisms. The use of different amounts of soluble and insoluble heterogeneous palladium catalyst precursors resulted in the same values of the differential reaction selectivity for competing aryl iodides, competing arylacetylenes, and their conversion products. The observed patterns are consistent with the occurrence of the Sonogashira reaction in solution through a homogeneous catalysis mechanism, in particular, in the presence of insoluble heterogeneous catalyst precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Rayadurgam, J., Sana, S., Sasikumar, M., and Gu, Q., Org. Chem. Front., 2021, vol. 8, no. 2, p. 384.

    Article  CAS  Google Scholar 

  2. Heravi, M.M., Ghanbarian, M., Ghalavand, N., and Nazari, N., Curr. Org. Chem., 2018, vol. 22, no. 14, p. 1420.

    Article  CAS  Google Scholar 

  3. Martek, B.A., Gazvoda, M., Urankar, D., and Košmrlj, J., Org. Lett., 2020, vol. 22, no. 13, p. 4938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leyva-Pérez, A., Oliver-Meseguer, J., Rubio-Marqués, P., and Corma, A., Angew. Chem. Int. Ed., 2013, vol. 52, no. 44, p. 11554.

    Article  Google Scholar 

  5. Djakovitch, L. and Rollet, P., Adv. Synth. Catal., 2004, vol. 346, nos. 13–15, p. 1782.

    Article  CAS  Google Scholar 

  6. Ananikov, V.P. and Beletskaya, I.P., Organometallics, 2012, vol. 31, p. 1595.

    Article  CAS  Google Scholar 

  7. Prima, D.O., Kulikovskaya, N.S., Galushko, A.S., Mironenko, R.M., and Ananikov, V.P., Curr. Opin. Green Sustain. Chem., 2021, vol. 31, p. 100502.

    Article  CAS  Google Scholar 

  8. Eremin, D.B. and Ananikov, V.P., Coord. Chem. Rev., 2017, vol. 346, p. 2.

    Article  CAS  Google Scholar 

  9. Biffis, A., Centomo, P., del Zotto, A., and Zecca, M., Chem. Rev., 2018, vol. 118, p. 2249.

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt, A.F., Kurokhtina, A.A., and Larina, E.V., Kinet. Catal., 2012, vol. 53, p. 84.

    Article  CAS  Google Scholar 

  11. Schmidt, A.F., Kurokhtina, A.A., and Larina, E.V., Kinet. Catal., 2019, vol. 60, p. 551.

    Article  CAS  Google Scholar 

  12. Billo, E.J., Excel for Scientists and Engineers: Numerical Methods, New York: Wiley, 2007.

    Book  Google Scholar 

  13. Mironenko, R.M., Belskaya, O.B., and Likholobov, V.A., Russ. J. Gen. Chem., 2020, vol. 90, p. 532.

    Article  CAS  Google Scholar 

  14. Mikhaylov, V.N., Sorokoumov, V.N., Liakhov, D.M., Tskhovrebov, A.G., and Balova, I.A., Catalysts, 2018, vol. 8, no. 4, p. 141.

    Article  Google Scholar 

  15. Zhao, X., Liu, X., Zhu, Y., and Lu, M., Appl. Organomet. Chem., 2015, vol. 29, no. 10, p. 674.

    Article  CAS  Google Scholar 

  16. Genelot, M., Dufaud, V., and Djakovitch, L., Adv. Synth. Catal., 2013, vol. 355, p. 2604.

    Article  CAS  Google Scholar 

  17. Thathagar, M.B., Kooyman, P.J., Boerleider, R., Jansen, E., Elsevier, C.J., and Rothenberg, G., Adv. Synth. Catal., 2005, vol. 347, no. 15, p. 1965.

    Article  CAS  Google Scholar 

  18. Dubey, P. and Singh, A.K., ChemistrySelect, 2020, vol. 5, no. 10, p. 2925.

    Article  CAS  Google Scholar 

  19. Goncalves, R.S.B., de Oliveira, A.B.V., Sindra, H.C., Archanjo, B.S., Mendoza, M.E., Carneiro, L.S.A., Buarque, C.D., and Esteves, P.M., ChemCatChem, 2016, vol. 8, no. 4, p. 743.

    Article  CAS  Google Scholar 

  20. Ezugwu, C.I., Mousavi, B., Asrafa, A., Mehta, A., Vardhan, H., and Verpoort, F., Catal. Sci. Technol., 2016, vol. 6, no. 7, p. 2050.

    Article  CAS  Google Scholar 

  21. Kuchkina, N.V., Sorokina, S.A., Bykov, A.V., Sulman, M.G., Bronstein, L.M., and Shifrina, Z.B., Nanomater, 2021, vol. 11, no. 12, p. 3345.

    Article  CAS  Google Scholar 

  22. Alapour, S., Farahani, M.D., Ramjugernath, D., Koorbanally, N.A., and Friedrich, H.B., ACS Sustain. Chem. Eng., 2019, vol. 7, no. 15, p. 12697.

    Article  CAS  Google Scholar 

  23. Gholinejad, M., Esmailoghli, H., Khosravi, F., and Sansano, J.M., J. Organomet. Chem., 2022, vol. 963, p. 122295.

    Article  CAS  Google Scholar 

  24. Karami, K., Abedanzadeh, S., Afroomand, M., Herves, P., and Bayat, P., Catal. Lett. (in press).

  25. Widegren, J.A. and Finke, R.G., J. Mol. Catal. A: Chem., 2003, vol. 198, p. 317.

    Article  CAS  Google Scholar 

  26. Crabtree, R.H., Chem. Rev., 2012, vol. 112, no. 3, p. 1536.

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt, A.F. and Kurokhtina, A.A., Kinet. Catal., 2012, vol. 53, p. 714.

    Article  CAS  Google Scholar 

  28. Köhler, K., Kleist, W., and Pröckl, S.S., Inorg. Chem., 2007, vol. 46, p. 1876.

    Article  PubMed  Google Scholar 

  29. Schmidt, A.F., al Halaiqa, A., and Smirnov, V.V., Synlett, 2006, vol. 18, p. 2861.

    Article  Google Scholar 

  30. Wussow, K., Abram, A., and Kohler, K., Catal. Commun., 2022, vol. 165, p. 106441.

    Article  CAS  Google Scholar 

  31. Finke, R.G. and Ozkar, S., J. Phys. Chem. C, 2019, vol. 123, p. 54.

    Google Scholar 

  32. Siemsen, P., Livingston, R.C., and Diederich, F., Angew. Chem. Int. Ed., 2000, vol. 39, no. 15, p. 2632.

    Article  CAS  Google Scholar 

  33. Temkin, O.N., Kinet. Catal., 2012, vol. 53, no. 3, p. 313.

    Article  CAS  Google Scholar 

  34. Schmidt, A.F., Kurokhtina, A.A., and Larina, E.V., Catal. Sci. Technol., 2014, vol. 4, p. 3439.

    Article  CAS  Google Scholar 

  35. Bandini, M., Luque, R., Budarin, V., and Macquarrie, D.J., Tetrahedron, 2005, vol. 61, no. 41, p. 9860.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-73-00137) and performed using the equipment of the Center for Collective Use of Analytical Instrumentation at the Irkutsk State University (http://ckp-rf.ru/ckp/3264/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Schmidt.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: DMF, N,N-dimethylformamide; DS, differential selectivity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larina, E.V., Kurokhtina, A.A., Lagoda, N.A. et al. Discrimination between the Homogeneous and Heterogeneous Mechanisms of Catalysis in the Copper- and Ligand-Free Sonogashira Reaction Using Phase Trajectory Analysis. Kinet Catal 64, 431–438 (2023). https://doi.org/10.1134/S0023158423040055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423040055

Keywords:

Navigation