Skip to main content
Log in

Effects of Structural and Textural Aspects on the Photocatalytic Performance of Zirconium Hydrogen Phosphate Doped with Tin Metal

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The preparation of zirconium hydrogen phosphate, α-Zr(HPO4)2 · H2O (α-ZrP), and its tin dopped derivatives were described. The structural and textural properties of the prepared materials were examined and their effect on catalytic performance in the removal of dyes such as methyl red and methylene blue from the aqueous solutions was revealed. The crystalline zirconium hydrogen phosphate was prepared by the interaction between zirconium tetrachloride and phosphoric acid in the presence of fluoric acid. The α-ZrP samples doped with tin were obtained by the impregnation method. X-ray diffraction, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and nitrogen adsorption analysis were applied to explore the structural and textural properties of α-ZrP modified by the addition of various amounts of tin. The obtained results indicated a significant effect of the tin amount on these properties. As a result of tin addition, a gradual decrease in the crystallinity of the samples was observed with the appearance of preferred orientation for the [002] planes. These changes coincided with an increase in the surface area and the total pore volume as well as a decrease in pore diameter. Investigation of the photocatalytic activity of the studied materials in the degradation methyl red and methylene blue indicated a significant increase in the degradation extent of the dyes with increasing amount of tin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Lu, W.Q., Xie, S.H., Zhou, W.S., Zhang, S.H., and Liu, A.L., Open Environ. Sci., 2008, vol. 2, p. 1.

    Article  CAS  Google Scholar 

  2. Jacob, J., Int. J. Biosci. Biochem. Bioinf., 2013, vol. 3, p. 657.

    CAS  Google Scholar 

  3. Yadav, A.K., Jain, C.K., and Malik, D.S., J. Sustainable Environ. Res., 2014, vol. 3, p. 95.

    Google Scholar 

  4. Saini, R.D., Int. J. Chem. Eng. Res., 2017, vol. 9, p. 121.

    Google Scholar 

  5. Reddy, S.S., Kotaiah, B., and Reddy, N.S.P., Bull. Chem. Soc. Ethiop., 2008, vol. 22, p. 369.

    CAS  Google Scholar 

  6. Devyani, R. and Padhi, B.S., Int. J. Environ. Sci., 2012, vol. 3, p. 940.

    Google Scholar 

  7. Lodhi, R.S. and Lal, N., Int. Res. J. Eng. Technol., 2017, vol. 4, p. 121.

    Google Scholar 

  8. Karpinska, J. and Kotowska, U., Water, 2019, vol. 11, p. 1.

    Google Scholar 

  9. Lakshmi, S.S., Rajesh, E.S., and Kumar, R.P., Int. J. Civil Eng. Technol., 2018, vol. 9, p. 452.

    Google Scholar 

  10. Kaleta, J., Kida, M., Koszelnik, P., Papciak, D., Puszkarewicz, A., and Tchórzewska-Cieślak, B., Arch. Environ. Prot., 2017, vol. 43, p. 32.

    Article  Google Scholar 

  11. Goyal, B., Sharma, R., and Mehta, P., Curr. Res. Pharm. Sci., 2015, vol. 5, p. 1.

    CAS  Google Scholar 

  12. Ali, I., Asim, M., and Khan, T.A., J. Environ. Manage., 2012, vol. 113, p. 170.

    Article  CAS  Google Scholar 

  13. Isaev, A.B., Magomedova, G.A., Zakargaeva, N.A., and Adamadzieva, N.K., Kinet. Catal., 2011, vol. 52, p. 197.

    Article  CAS  Google Scholar 

  14. Nikazara, M., Gholivand, K., and Mahanpoor, K., Kinet. Catal., 2007, vol. 48, p. 214.

    Article  CAS  Google Scholar 

  15. Kassem, M., Kinet. Catal., 2016, vol. 57, p. 26.

    Article  CAS  Google Scholar 

  16. Vorontsov, A.V., Kozlov, D.V., Smirniotis, P.G., and Parmon, V.N., Kinet. Catal., 2005, vol. 46, p. 189.

    Article  CAS  Google Scholar 

  17. Vorontsov, A.V., Kozlova, E.A., Besov, A.S., Kozlov, D.V., Kiselev, S.A., and Safatov, A.S., Kinet. Catal., 2010, vol. 51, p. 801.

    Article  CAS  Google Scholar 

  18. Stanković, H., Krstić, A., Rubežić, M., Vasić, M., Ranđelović, M., and Zarubica, A., Adv. Technol., 2019, vol. 8, p. 82.

    Article  Google Scholar 

  19. Shivaraju, H.P. and Chandrashekar, C.K., Int. J. Res. Chem. Environ., 2012, vol. 2, p. 26.

    Google Scholar 

  20. Khalilova, H.K., Hasanova, S.A., and Aliyev, F.G., J. Environ. Prot., 2018, vol. 9, p. 691.

    Article  CAS  Google Scholar 

  21. Manohari, J., Bindu, G.H., Jyothi, K.D., and Kumar, Y.V., J. Chem. Chem. Sci., 2018, vol. 8, p. 642.

    Article  Google Scholar 

  22. Benhebal, H., Wolfs, C., Kadi, S., Tilkin, R.G., Allouche, B., Belabid, R., Collard, V., Felten, A., Louette, P., Lambert, S.D., and Mahy, J.G., Inorganics, 2019, vol. 7, p. 77.

    Article  CAS  Google Scholar 

  23. Barhon, Z., Belhaj, M., Albizane, A., Azzi, M., Saffaj, N., Bennazha, J., and Younssi, S.A., Fresenius Environ. Bull., 2009, vol. 18, p. 2323.

    CAS  Google Scholar 

  24. Rapôsoa, C.M.O. and Eonb, J.G., Mater. Res., 2002, vol. 5, p. 421.

    Article  Google Scholar 

  25. Bruque, S., Aranda, M.A.G., Losilla, E.R., Olivera-Pastor, P., and Maireles-Torres, P., Inorg. Chem., 1995, vol. 34, p. 893.

    Article  CAS  Google Scholar 

  26. Wong, M., Ishige, R., White, K.L., Li, P., Kim, D., Krishnamoorti, R., Gunther, R., Higuchi, T., Jinnai, H., Takahara, A., Nishimura, R., and Hung-Jue Sue, Nat. Commun., 2014, vol. 5, p. 1.

    CAS  Google Scholar 

  27. Slade, R.C.T., Knowles, J.A., Jones, D.J., and Roziere, J., Solid State Ionics, 1997, vol. 96, p. 9.

    Article  CAS  Google Scholar 

  28. Zhou, Y., Noshadi, I., Ding, H., Liu, J., Parnas, R.S., Clearfield, A., Xiao, M., Meng, Y., and Sun, L., Catalysts, 2018, vol. 8, p. 17.

    Article  Google Scholar 

  29. Shakshooki, S.K., Arafa, E.A., Etwire, E., and Bejey, A.M., Acad. J. Chem., 2017, vol. 2, p. 16.

    CAS  Google Scholar 

  30. Jiang, Q., Liu, M., Ma, H., Wang, T., and Kuai, Y., Opt. Mater., 2016, vol. 62, p. 447.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Prof. I. Othman, Director General, and Dr. A.W. Allaf, head of the Chemistry Department for their encouragement. Thanks are also to Mr. A. Tello, Mr. A. Alzeir and Mr. M. Nidal AL Kafri for the spectroscopic and EDX measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kassem.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Abbreviations: α-ZrP, zirconium hydrogen phosphate α‑Zr(HPO4)2 · H2O.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassem, M., Harmalani, H. Effects of Structural and Textural Aspects on the Photocatalytic Performance of Zirconium Hydrogen Phosphate Doped with Tin Metal. Kinet Catal 62, 264–269 (2021). https://doi.org/10.1134/S002315842102004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842102004X

Keywords:

Navigation