Skip to main content
Log in

Higher Alcohols from Syngas with Graphite Oxide Modified CuFeMn Catalyst with Low CO2 Selectivity

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The reasonable conversion of renewable resources such as biomass to fuels and chemical materials is vital important section for the natural carbon cycle and the effective solution for sustainable use of our planet’s resources. The process of syngas (from biomass gasification) to higher alcohols is an atomic efficiency reaction pathway and it attracts extensively attention with great potential applications and significance in science. The formation of CO2 during syngas conversion reaction in industrial scale is undesirable considering the less utilization value and greenhouse effect of CO2. In this work, we have prepared four catalysts with active components CuFeMn and support graphite oxide (GO) by traditional immersion preparation method. The introduction of GO improved the hydrophobic property of the catalyst. The H2O-TPD test confirmed that the GO modified catalyst performed a weaker water adsorption capacity than unmodified catalyst CuFeMn. Thus, the transfer rate of H2O on the modified catalyst surface increased and the residence time of H2O on the catalyst surface was greatly shortened. The undesired reaction of water-gas shift was suppressed and the CO2 formation was mainly limited in the catalyst surface during the syngas to higher alcohols reaction process. In addition, the effect of the amount of added GO was investigated and the catalyst CuFeMn-GO0.2-AR was found to exhibit the great performance for syngas to higher alcohols reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Fuso Nerini, F., Tomei, J., To, L.S., Bisaga, I., Parikh, P., Black, M., Borrion, A., Spataru, C., Castán Broto, V., Anandarajah, G., Milligan, B., and Mulugetta, Y., Nat. Energy, 2018, vol. 3, p. 10.

    Article  Google Scholar 

  2. Xu, D., Zhang, Y., Hsieh, T.L., Guo, M., Qin, L., Chung, C., Fan, L.S., and Tong, A., Appl. Energy, 2018, vol. 222, p. 119.

    Article  CAS  Google Scholar 

  3. Lu, Y., Yan, Q., Han, J., Cao, B., Street, J., and Yu, F., Fuel, 2017, vol. 193, p. 369.

    Article  CAS  Google Scholar 

  4. Conti, R., Jäger, N., Neumann, J., Apfelbacher, A., Daschner, R., and Hornung, A., Energy Technol., 2017, vol. 5, no. 1, p. 104.

    Article  CAS  Google Scholar 

  5. Kolesnichenko, N.V., Kitaev, L.E., Bukina, Z.M., Markova, N.A., Yushchenko, V.V., Yashina, O.V., Lin, G.I., and Rozovskii, A.Ya., Kinet. Catal., 2007, vol. 48, no. 6, p. 789.

    Article  CAS  Google Scholar 

  6. Wang, G., Zhang, R., and Wang, B., Appl. Catal., A, 2013, vol. 466, p. 77.

  7. Dry, M.E., Catal. Today, 2002, vol. 71, no. 3, p. 227.

    Article  CAS  Google Scholar 

  8. Coulson, E.A., Nature, 1950, vol. 166, no. 4222, p. 533.

    Article  Google Scholar 

  9. Liu, W., Wang, Y., Wilcox, W., and Li, S., AIChE J., 2012, vol. 58, no. 9, p. 2820.

    Article  CAS  Google Scholar 

  10. Jiao, F., Li, J., Pan, X., Xiao, J., Li, H., Ma, H., Wei, M., Pan, Y., Zhou, Z., Li, M., Miao, S., Li, J., Zhu, Y., Xiao, D., He, T., Yang, J., Qi, F., Fu, Q., and Bao, X., Science, 2016, vol. 351, no. 6277, p. 1065.

    Article  CAS  Google Scholar 

  11. Yang, J., Pan, X., Jiao, F., Li, J., and Bao, X., Chem. Commun., 2017, vol. 53, no. 81, p. 11146.

    Article  CAS  Google Scholar 

  12. Yang, N., Liu, X., Asundi, A.S., Nørskov, J.K., and Bent, S.F., Catal. Lett., 2017, vol. 148, no. 1, p. 289.

    Article  Google Scholar 

  13. Parlett, C.M., Wilson, K., and Lee, A.F., Chem. Soc. Rev., 2013, vol. 42, no. 9, p. 3876.

    Article  CAS  Google Scholar 

  14. Zhang, Y., Ding, C., Wang, J., Jia, Y., Xue, Y., Gao, Z., Yu, B., Gao, B., Zhang, K., and Liu, P., Catal. Sci. Technol., 2019, vol. 9, p. 1581.

    Article  CAS  Google Scholar 

  15. Choi, Y.M. and Liu, P., J. Am. Chem. Soc., 2009, vol. 131, no. 36, p. 13054.

    Article  CAS  Google Scholar 

  16. Lopez, L., Velasco, J., Montes, V., Marinas, A., Cabrera, S., Boutonnet, M., and Järås, S., Catalysts, 2015, vol. 5, no. 4, p. 1737.

    Article  CAS  Google Scholar 

  17. Haider, M.A., Gogate, M.R., and Davis, R.J., J. Catal., 2009, vol. 261, no. 1, p. 9.

    Article  CAS  Google Scholar 

  18. Yue, H., Ma, X., and Gong, J., Acc. Chem. Res., 2014, vol. 47, no. 5, p. 1483.

    Article  CAS  Google Scholar 

  19. Gao, X., Xu, B., Yang, G., Feng, X., Yoneyama, Y., Taka, U., and Tsubaki, U., Catal. Sci. Technol., 2018, vol. 8, p. 2087.

    Article  CAS  Google Scholar 

  20. Li, X., San, X., Zhang, Y., Ichii, T., Meng, M., Tan, Y., and Tsubaki, N., ChemSusChem, 2010, vol. 3, no. 10, p. 1192.

    Article  CAS  Google Scholar 

  21. Chen, J.F., Liu, Y., and Zhang, Y., Ind. Eng. Chem. Res., 2012, vol. 51, no. 25, p. 8700.

    Article  CAS  Google Scholar 

  22. Lebarbier, V.M., Dagle, R.A., Kovarik, L., Lizarazo-Adarme, J.A., King, D.L., and Palo, D.R., Catal. Sci. Technol., 2012, vol. 2, no. 10, p. 2116.

    Article  CAS  Google Scholar 

  23. Burch, R. and Hayes, M.J., J. Catal., 1997, vol. 165, no. 2, p. 249.

    Article  CAS  Google Scholar 

  24. Ngo, H., Liu, Y., and Murata, K., React. Kinet. Mech. Catal., 2011, vol. 102, no. 2, p. 425.

    Article  CAS  Google Scholar 

  25. Wang, J.J., Xie, J.R., Huang, Y.H., Chen, B.H., Lin, G.D., and Zhang, H.B., Appl. Catal., A, 2013, vol. 468, no. 12, p. 44.

  26. Yang, H., Wang, Y., Liu, S., Song, Q., Xie, Z., and Gao, Z., Catal. Lett., 2009, vol. 127, nos. 3–4, p. 448.

    Article  CAS  Google Scholar 

  27. Gupta, M., Smith, M.L., and Spivey, J.J., ACS Catal., 2011, vol. 1, no. 6, p. 641.

    Article  CAS  Google Scholar 

  28. Lopez, L., Montes, V., Kušar, H., Cabrera, S., Boutonnet, M., and Järås, S., Appl. Catal., A, 2016, vol. 526, p. 77.

  29. Li, J., Gao, Z.H., Li, S.J., Zuo, Z.J., and Huang, W., Energy Sources, 2016, vol. 38, no. 16, p. 2383.

    Article  CAS  Google Scholar 

  30. Zhang, R., Wang, G., and Wang, B., J. Catal., 2013, vol. 305, no. 9, p. 238.

    Article  CAS  Google Scholar 

  31. Al-Dossary, M., Ojeda, M., and Fierro, J.L.G., Catal. Lett., 2015, vol. 145, no. 5, p. 1126.

    Article  CAS  Google Scholar 

  32. Wang, D., Yang, G., Ma, Q., Yoneyama, Y., Tan, Y., Han, Y., and Tsubaki, N., Fuel, 2013, vol. 109, no. 7, p. 54.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Doctoral Research Program of Zhengzhou University of Light Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhang.

Ethics declarations

The authors declare that the have no conflicts of interest.

Additional information

Abbreviations: GO, graphite oxide; AR, after reduction; STYC2+, space-time yield; HAS, higher alcohols from syngas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, Y. Higher Alcohols from Syngas with Graphite Oxide Modified CuFeMn Catalyst with Low CO2 Selectivity. Kinet Catal 61, 861–868 (2020). https://doi.org/10.1134/S002315842006018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842006018X

Keywords:

Navigation