Skip to main content
Log in

Simulation of CO Oxidation in the Presence of Cyclic Gold Thiolate Complexes: The Effect of a Ligand

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The interaction of CO and O2 and the subsequent oxidation of CO in the presence of cyclic thiolate and dithiolate complexes of Au(I), which represent the model fragments of thiolate-protected gold clusters, were studied using the density functional theory (PBE). On the basis of the calculated values, it was shown that O2 and CO were weakly bound to a cyclic thiolate complex of Au(I). In the presence of a dithiolate complex, the activation of O2 and CO and the subsequent oxidation of CO occurred with low activation energies. The results obtained demonstrate the important role of ligands in the catalytic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bond, G.C., Louis, C., and Thompson, D.T., Catalysis by Gold, London: Imperial College, 2007.

    Google Scholar 

  2. Stratakis, M. and Garcia, H., Chem. Rev., 2012, vol. 112, no. 8, p. 4469.

    Article  CAS  Google Scholar 

  3. Pichugina, D.A., Kuz’menko, N.E., and Shestakov, A.F., Russ. Chem. Rev., 2015, vol. 84, no. 11, p. 1114.

    Article  CAS  Google Scholar 

  4. Li, G. and Jin, R., Acc. Chem. Res., 2014, vol. 47, no. 3, p. 816.

    Article  Google Scholar 

  5. Zhang, G., Wang, R., and Li, G., Chin. Chem. Lett., 2018, vol. 29, no. 5, p. 687.

    Article  CAS  Google Scholar 

  6. Akola, J., Walter, M., Whetten, R.L., Häkkinen, H., and Grönbeck, H., J. Am. Chem. Soc., 2008, vol. 130, no. 12, p. 3756.

    Article  CAS  Google Scholar 

  7. Heaven, M.W., Dass, A., White, P.S., Holt, K.M., and Murray, R.W., J. Am. Chem. Soc., 2008, vol. 130, no. 12, p. 3754.

    Article  CAS  Google Scholar 

  8. Qian, H., Eckenhoff, W.T., Zhu, Y., Pintauer, T., and Jin, R., J. Am. Chem. Soc., 2010, vol. 132, no. 24, p. 8280.

    Article  CAS  Google Scholar 

  9. Crasto, D., Malola, S., Brosofsky, G., Dass, A., and Häkkinen, H., J. Am. Chem. Soc., 2014, vol. 136, no. 13, p. 5000.

    Article  CAS  Google Scholar 

  10. Das, A., Li, T., Li, G., Nobusada, K., Zeng, C., Rosi, N.L., and Jin, R., Nanoscale, 2014, vol. 6, p. 6458.

    Article  CAS  Google Scholar 

  11. Zeng, C., Liu, C., Chen, Y., Rosi, N.L., and Jin, R., J. Am. Chem. Soc., 2014, vol. 136, no. 34, p. 11922.

    Article  CAS  Google Scholar 

  12. Wang, P., Xiong, L., Sun, X., Ma, Z., and Pei, Y., Nanoscale, 2018, vol. 10, no. 8, p. 3918.

    Article  CAS  Google Scholar 

  13. Yoskamtorn, T., Yamazoe, S., Takahata, R., Nishigaki, J., Thivasasith, A., Limtrakul, J., and Tsukuda, T., ACS Catal., 2014, vol. 4, no. 10, p. 3696.

    Article  CAS  Google Scholar 

  14. Li, G. and Jin, R., Nanotechnol. Rev., 2013, vol. 2, no. 5, p. 529.

    CAS  Google Scholar 

  15. Li, G. and Jin, R., J. Am. Chem. Soc., 2014, vol. 136, no. 32, p. 11347.

    Article  CAS  Google Scholar 

  16. Liu, Y., Tsunoyama, H., Akita, T., Xie, S., and Tsukuda, T., ACS Catal., 2011, vol. 1, no. 1, p. 2.

    Article  CAS  Google Scholar 

  17. Kurashige, W., Yamaguchi, M., Nobusada, K., and Negishi, Y., J. Phys. Chem. Lett., 2012, vol. 3, no. 18, p. 2649.

    Article  CAS  Google Scholar 

  18. Harkness, K.M., Cliffel, D.E., and McLean, J.A., Analyst, 2010, vol. 135, no. 5, p. 868.

    Article  CAS  Google Scholar 

  19. Nie, X., Qian, H., Ge, Q., Xu, H., and Jin, R., ACS Nano, 2012, vol. 6, p. 6014.

    Article  CAS  Google Scholar 

  20. Wu, Z., Jiang, D.E., Mann, A.K., Mullins, D.R., Qiao, Z.A., Allard, L.F., Zeng, C., Jin, R., and Overbury, S.H., J. Am. Chem. Soc., 2014, vol. 136, no. 16, p. 6111.

    Article  CAS  Google Scholar 

  21. Nie, X., Zeng, C., Ma, X., Qian, H., Ge, Q., Xu, H., and Jin, R., Nanoscale, 2013, vol. 5, p. 5912.

    Article  CAS  Google Scholar 

  22. Li, Y., Chen, Y., House, S.D., Zhao, S., Wahab, Z., Yang, J.C., and Jin, R., ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 35, p. 29425.

    Article  CAS  Google Scholar 

  23. Bonasia, P.J., Gindelberger, D.E., and Arnold, J., Inorg. Chem., 1993, vol. 32, no. 23, p. 5126.

    Article  CAS  Google Scholar 

  24. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865.

    Article  CAS  Google Scholar 

  25. Stevens, W.J., Krauss, M., Basch, H., and Jasien, P.G., Can. J. Chem., 1992, vol. 70, no. 2, p. 612.

    Article  CAS  Google Scholar 

  26. Nikitina, N.A., Pichugina, D.A., and Kuz’menko, N.E., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 8, p. 1507.

    Article  CAS  Google Scholar 

  27. Pichugina, D.A., Shestakov, A.F., and Kuz’menko, N.E., Kinet. Catal., 2007, vol. 48, no. 2, p. 305.

    Article  CAS  Google Scholar 

  28. Askerka, M., Pichugina, D., Kuz’menko, N., and Shestakov, A., J. Phys. Chem. A, 2012, vol. 116, no. 29, p. 7686.

    Article  CAS  Google Scholar 

  29. Pichugina, D.A., Nikolaev, S.A., Mukhamedzyanova, D.F., and Kuz’menko, N.E., Russ. J. Phys. Chem. A, 2014, vol. 88, no. 6, p. 959.

    Article  CAS  Google Scholar 

  30. Polynskaya, Y.G., Pichugina, D.A., and Kuz’menko, N.E., Comput. Theor. Chem., 2015, vol. 1055, p. 61.

    Article  CAS  Google Scholar 

  31. Schlegel, H.B., J. Comput. Chem., 1982, vol. 3, no. 2, p. 214.

    Article  CAS  Google Scholar 

  32. Gonzalez, C., and Schlegel, H.B., J. Chem. Phys., 1989, vol. 90, no. 4, p. 2154.

    Article  CAS  Google Scholar 

  33. Laikov, D.N. and Ustynyuk, Yu.A., Russ. Chem. Bull., 2005, no. 3, p. 820.

  34. Sadovnichy, V., Tikhonravov, A., Voevodin, Vl., and Opanasenko, V., Contemporary High Performance Computing: From Petascale toward Exascale, Boca Raton: CRC Press, 2013, p. 283.

    Google Scholar 

  35. Kawasaki, H., Kumar, S., Li, G., Zeng, C., Kauffman, D.R., Yoshimoto, J., Iwasaki, Y., and Jin, R., Chem. Mater., 2014, vol. 26, no. 9, p. 2777.

    Article  CAS  Google Scholar 

  36. Li, Z., Liu, C., Abroshan, H., Kauffman, D.R., and Li, G., ACS Catal., 2017, vol. 7, no. 5, p. 3368.

    Article  CAS  Google Scholar 

  37. Li, L., Gao, Y., Li, H., Zhao, Y., Pei, Y., Chen, Z., and Zeng, X.C., J. Am. Chem. Soc., 2013, vol. 135, no. 51, p. 19336.

    Article  CAS  Google Scholar 

  38. Zeng, W., Tang, J., Wanga, P., and Pei, Y., RSC Adv., 2016, vol. 6, p. 55867.

    Article  CAS  Google Scholar 

  39. Haruta, M., Gold Bull., 2004, vol. 37, p. 27.

    Article  CAS  Google Scholar 

  40. Bond, G.C. and Thompson, D.T., Gold Bull., 2000, vol. 33, p. 41.

    Article  CAS  Google Scholar 

  41. Knoppew, S. and Bürgi, T., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 15 816.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the Center for Collective Use of High-Performance Computing Resources at the Moscow State University.

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 17-03-00962).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Nikitina.

Additional information

Translated by Valentin Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitina, N.A., Pichugina, D.A. & Kuz’menko, N.E. Simulation of CO Oxidation in the Presence of Cyclic Gold Thiolate Complexes: The Effect of a Ligand. Kinet Catal 60, 606–611 (2019). https://doi.org/10.1134/S0023158419050033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158419050033

Keywords:

Navigation