Skip to main content
Log in

Vibrational nonequilibrium and electronic excitation in the reaction of hydrogen with oxygen behind a shock wave

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A theoretical analysis of ignition and combustion processes in a hydrogen-oxygen mixture behind a shock wave is presented (1000 K ≤ T ≤ 2500 K; 2.0 atm ≥ P ≥ 0.3 atm). The experiments performed using stoichiometric mixtures with the detection of OH (2Σ+) and rich mixtures with the detection of OH (2Π) were interpreted in terms of a general kinetic approach. In this case, the apparent rate constant of the chain branching reaction H + O2 → O + OH was the only adjustable parameter. It was found that this rate constant increased with decreasing hydrogen content and exceeded equilibrium values. In this context, the mechanism of chain branching, which occurs through the formation of the vibrationally excited radical HO2(v), and the role of secondary vibrationally nonequilibrium O2 and O2(1Δ) molecules and the reaction H + O2(1Δ) → O + OH are discussed. New mechanisms of the formation and quenching of electronically excited OH(2Σ+) radicals, O(1 D) atoms, and O2(1Δ) molecules are considered. The results of a nonempirical (ab initio) analysis of molecular systems and the corresponding estimations of reaction rate constants were widely used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Semenov, N.N., Tsepnye reaktsii (Chain Reactions), Leningrad: Goskhimtekhizdat, 1934.

    Google Scholar 

  2. Semenov, N.N., O nekotorykh problemakh khimicheskoi kinetiki i reaktsionnoi sposobnosti (Some Problems of Chemical Kinetics and Reactivity), Moscow: Akad. Nauk SSSR, 1958.

    Google Scholar 

  3. Lewis, B. and von Elbe, G., Combustion, Flames, and Explosions of Gases, New York: Academic, 1961.

    Google Scholar 

  4. Belles, F.E. and Lauver, M.R., J. Chem. Phys., 1964, vol. 40, p. 415.

    Article  CAS  Google Scholar 

  5. Ripley, D.L. and Gardner, W.C., J. Chem. Phys., 1966, vol. 44, p. 2285.

    Article  CAS  Google Scholar 

  6. Safaryan, M.N., Skrebkov, O.V., Vasil’ev, V.M., and Stesik, L.N., Rep. no. 1529 of the Branch of the Inst. of Chemical Physics, Chernogolovka, Moscow oblast, 1967.

    Google Scholar 

  7. Kondratiev, V.N., in Comprehensive Chemical Kinetics, Amsterdam: Elsevier, 1969, vol. 2, p. 119.

    Google Scholar 

  8. Jachimowski, C.J. and Houghton, W.M., Combust. Flame, 1971, vol. 17, p. 25.

    Article  CAS  Google Scholar 

  9. Kondrat’ev, V.N. and Nikitin, E.E., Kinetika i mekhanizm gazofaznykh reaktsii (Kinetics and Mechanism of Gas-Phase Reactions), Moscow: Nauka, 1974.

    Google Scholar 

  10. Schott, G.L. and Getzinger, R.W., in Physical Chemistry of Fast Reactions, vol. 1: Gas Phase Reactions of Small Molecules, London: Plenum, 1973.

    Google Scholar 

  11. Dougherty, E.P., Rabitz, H, J. Chem. Phys., 1980, vol. 72, p. 6571.

    Article  CAS  Google Scholar 

  12. Kondrat’ev, V.N. and Nikitin, E.E., Khimicheskie protsessy v gazakh (Chemical Processes in Gases), Moscow: Nauka, 1981.

    Google Scholar 

  13. Maas, U. and Warnatz, J., Combust. Flame, 1988, vol. 74, p. 53.

    Article  CAS  Google Scholar 

  14. Maas, U. and Pope, S.B., Combust. Flame, 1992, vol. 88, p. 239.

    Article  CAS  Google Scholar 

  15. Tonello, N.A., Sichel, M., and Oran, E.S., 15th ICDERS, Colorado, 1995, p. 51.

  16. Ryu, S.O., Hwang, S.M., and Rabinovitz, M.J., J. Phys. Chem., 1995, vol. 99, p. 13 984.

  17. Blumenthal, R., Fieweger, K., Komp, K.H., et al., 20th Int. Symp. on Shock Tubes and Waves, Pasadena, 1996, p. 935.

  18. Azatyan, V.V. and Merzhanov, A.G., Khimicheskaya fizika na poroge XXI veka (Chemical Physics at the Turn of the 21st Century), Moscow: Nauka, 1996.

    Google Scholar 

  19. Divakov, O.G., Eremin, A. V., Ziborov, V.S., and Fortov, V.E., Dokl. Akad. Nauk, 2000, vol. 373, no. 4, p. 487 [Dokl. Chem. (Engl. Transl.), vol. 373, nos. 4–6, p. 141].

    CAS  Google Scholar 

  20. Michael, J.V., Suhterland, J.W., Harding, L.B., and Wagner, A.F., Proc. Combust. Inst., 2000, vol. 28, p. 1471.

    Article  CAS  Google Scholar 

  21. Starik, A.M. and Titova, N.S., Khim. Fiz., 2001, vol. 20, no. 5, p. 17.

    CAS  Google Scholar 

  22. Skrebkov, O.V., Myagkov, Yu.P., Karkach, S.P., et al., Dokl. Akad. Nauk, 2002, vol. 383, no. 6, p. 1 [Dokl. Phys. Chem. (Engl. Transl.), vol. 383, nos. 4–6, p. 93].

    Google Scholar 

  23. Skrebkov, O.V., Karkach, S.P., Vasil’ev, V.M., and Smirnov, A.L., Chem. Phys. Lett., 2003, vol. 375, p. 413.

    Article  CAS  Google Scholar 

  24. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian-94, Revision C.4, Pittsburg, PA: Gaussian Inc., 1995.

    Google Scholar 

  25. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., et al., J. Comput. Chem., 1993, vol. 14, p. 1347.

    Article  CAS  Google Scholar 

  26. Karkach, S.P. and Osherov, V.I., J. Chem. Phys., 1999, vol. 110, p. 11918.

  27. Nikitin, E.E., Teoriya elementarnykh atomno-molekulyamykh protsessov v gazakh (Theory of Elementary Atomic and Molecular Processes in Gases), Moscow: Khimiya, 1970.

    Google Scholar 

  28. Vasil’ev, V.M., Kulikov, S.V., and Skrebkov, O.V., Prikl. Mekh. Tekh. Fiz., 1977, vol. 13.

  29. Skrebkov, O.V. and Kulikov, S.V., Chem. Phys., 1998, vol. 227, p. 349.

    Article  CAS  Google Scholar 

  30. Baulch, D.L., Cobos, C.J., Cox, R.A., et al., Combust. Flame, 1994, vol. 98, p. 59.

    Article  CAS  Google Scholar 

  31. Mallard, W.G., Westley, F., Herron, J.T., and Hampson, R.F., NIST Chemical Kinetics Database, Ver. 6.0, Gaithersburg, Md., 1994.

  32. Fairchild, P.W., Smith, G.P., and Crosley, D.R., J. Chem. Phys., 1983, vol. 79, p. 1795.

    Article  CAS  Google Scholar 

  33. Smith, G.P. and Crosley, D.R., J. Chem. Phys., 1986, vol. 85, p. 3896.

    Article  CAS  Google Scholar 

  34. Carrington, T., J. Chem. Phys., 1959, vol. 30, p. 1087.

    Article  CAS  Google Scholar 

  35. Huber, K.-P. and Herzberg, G., Molecular Spectra and Molecular Structure, New York: van Nostrand, 1979.

    Google Scholar 

  36. 37. Filatov, M., Reckien, W., Peyerimhoff, S.D., and Shaik, S., J. Phys. Chem. A, 2000, vol. 104, p. 12014.

    Article  CAS  Google Scholar 

  37. Volokhov, V.M., Voronin, A.I., Karkach, S.P., et al., Khim. Fiz, 1998, vol. 17, no. 8, p. 3.

    CAS  Google Scholar 

  38. Karkach, S.P., Osherov, V.I., and Ushakov, V.G., Khim. Fiz., 2000, vol. 19, no. 10, p. 3.

    CAS  Google Scholar 

  39. Miller, J.A., J. Chem. Phys., 1981, vol. 74, p. 5120.

    Article  CAS  Google Scholar 

  40. Lin, S.Y., Rackham, E.J., and Guo, H., J. Phys. Chem. A, 2006, vol. 110, p. 1534.

    Article  CAS  Google Scholar 

  41. Wadlinger, R.L. and Darwent, B. de B., J. Phys. Chem., 1967, vol. 71, p. 2057.

    Article  CAS  Google Scholar 

  42. Washida, N., Akimoto, H., and Okuda, M., J. Phys. Chem., 1978, vol. 82, p. 18.

    Article  CAS  Google Scholar 

  43. Basevich, V.Ya. and Vedeneev, V.I., Khim. Fiz., 1985, vol. 4, no. 8, p. 1102.

    CAS  Google Scholar 

  44. Shaw, R., Int. J. Chem. Kinet., 1977, vol. 9, p. 929.

    Article  CAS  Google Scholar 

  45. Fisher, E.R. and Armentrout, P.B., J. Phys. Chem., 1990, vol. 94, p. 4396.

    Article  CAS  Google Scholar 

  46. Litorja, M. and Ruscic, B., J. Electron Spectrosc. Relat. Phenom., 1998, vol. 97, p. 131.

    Article  CAS  Google Scholar 

  47. Kondrat’ev, V.N., Nikitin, E.E., Reznikov, A.I., and Umanskii, S.Ya., Termicheskie bimolekulyamye reaktsii v gazakh (Thermal Bimolecular Reactions in Gases), Moscow: Nauka, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.V. Skrebkov, S.P. Karkach, 2007, published in Kinetika i Kataliz, 2007, Vol. 48, No. 3, pp. 388–396.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skrebkov, O.V., Karkach, S.P. Vibrational nonequilibrium and electronic excitation in the reaction of hydrogen with oxygen behind a shock wave. Kinet Catal 48, 367–375 (2007). https://doi.org/10.1134/S0023158407030044

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158407030044

Keywords

Navigation