Skip to main content
Log in

Mechanism of CO oxidation in excess H2 over CuO/CeO2 catalysts: ESR and TPD studies

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The oxidation of CO with oxygen over (0.25–6.4)% CuO/CeO2 catalysts in excess H2 is studied. CO conversion increases and the temperature range of the reaction decreases by 100 K as the CuO content is raised. The maximal CO conversion, 98.5%, is achieved on 6.4% CuO/CeO2 at 150°C. At T > 150°C, the CO conversion decreases as a result of the deactivation of part of the active sites because of the dissociative adsorption of hydrogen. CO is efficiently adsorbed on the oxidized catalyst to form CO-Cu+ carbonyls on Cu2O clusters and is oxidized by the oxygen of these clusters, whereas it is neither adsorbed nor oxidized on Cu0 of the reduced catalysts. The activity of the catalysts is recovered after the dissociative adsorption of O2 on Cu0 at T ∼ 150°C. The activation energies of CO, CO2, and H2O desorption are estimated, and the activation energy of CO adsorption yielding CO-Cu+ carbonyls is calculated in the framework of the Langmuir-Hinshelwood model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kahlich, M.J., Gasteiger, H.A., and Behm, R.J. J. Catal., 1997, vol. 171, p. 93.

    Article  CAS  Google Scholar 

  2. Liu, W. and Flytzani-Stefanopoulos, M., J. Catal., 1995, vol. 153, p. 304.

    Article  CAS  Google Scholar 

  3. Liu, W. and Flytzani-Stefanopoulos, M., J. Catal., 1995, vol. 153, p. 317.

    Article  CAS  Google Scholar 

  4. Avgoropoulos, G., Ioannides, T., Matralis, H., Baatista, J., and Hocevar, S., Catal. Lett., 2001, vol. 73, p. 33.

    Article  Google Scholar 

  5. Matinez-Arias, A., Fernandez-Garcia, M., Galvez, O., Coronado, J.M., Anderson, J.A., Conesa, J.C., Soria, J., and Munuera, G., J. Catal., 2000, vol. 195, p. 207.

    Article  Google Scholar 

  6. Sedmak, G., Hocevar, S., and Levec, J., J. Catal., 2003, vol. 213, p. 135.

    Article  CAS  Google Scholar 

  7. Dow, W.-P., Wang, Y.-P., and Huang, T.-G., Appl. Catal., A, 2000, vol. 244(1), p. 155.

    Google Scholar 

  8. Avgoropoulos, G. and Ioannides, T., Appl. Catal., A, 2003, vol. 190, p. 25.

    Google Scholar 

  9. Skarman, B., Grandjean, D., Benfield, R.E., Hinz, A., Andersson, A., and Wallenberg, L.R., J. Catal., 2002, vol. 211, p. 119.

    Article  CAS  Google Scholar 

  10. Ozkara, S. and Aksoylu, A.E., Appl. Catal., A, 2003, vol. 251, p. 75.

    Article  CAS  Google Scholar 

  11. Ratnasamy, P., Srinivas, D., Satyanarayana, C.V.V., Manikandan, P., Kumaran, R.S., Sachin, M., and Shetti, V.N., J. Catal., 2004, vol. 221, p. 455.

    Article  CAS  Google Scholar 

  12. Ismailov, E.G., Maksimov, N.G., Anufrienko, V.F., and Sokolovskii, V.D., React. Kinet. Catal. Lett., 1977, vol. 7, no. 1, p. 99.

    Article  CAS  Google Scholar 

  13. Il’ichev, A.N., Kuli-zade, A.M., and Korchak, V.N., Kinet. Katal., 2005, vol. 46, no. 3, p. 423 [Kinet. Catal. (Engl. Transl.), vol. 46, no. 3, p. 396].

    Google Scholar 

  14. Tret’yakov, I.I., Shub, B.R., and Sklyarov, A.V., Zh. Fiz. Khim., 1970, vol. 44, p. 2112.

    CAS  Google Scholar 

  15. Handbuch der preparativen anorganischen Chemie, von Brauer, G., Ed., Stuttgart: Ferdinand Enke, 1981.

    Google Scholar 

  16. Kucherov, A.V. and Slinkin, A.A., Usp. Khim., 1992, vol. 61, no. 9, p. 1687.

    CAS  Google Scholar 

  17. Il’ichev, A.N., Ukharskii, A.A., and Matyshak, V.A., Kinet. Katal., 1995, vol. 35, no. 2, p. 268.

    Google Scholar 

  18. Martinez-Arias, A., Fernandez-Garcia, M., Soria, J., and Conesa, J., J. Catal., 1999, vol. 182, p. 367.

    Article  CAS  Google Scholar 

  19. Soria, J., Martinez-Arias, A., and Conesa, J., J. Chem. Soc., Faraday Trans., 1995, vol. 91, no. 11, p. 1669.

    Article  CAS  Google Scholar 

  20. Il’ichev, A.N., Shibanova, M.D., Ukharskii, A.A., Kulizade, A.M., and Korchak, V.N., Kinet. Katal., 2005, vol. 46, no. 3, p. 414 [Kinet. Catal. (Engl. Transl.), vol. 46, no. 3, p. 387].

    Article  Google Scholar 

  21. Luo, M.-F., Zhong, Y.-J., Yuan, X.-X., and Zheng, X.-M., Appl. Catal., A, 1997, vol. 162, p. 121.

    Article  CAS  Google Scholar 

  22. Sokolovskii, V.D., Boreskov, G.K., Davydov, A.A., Gundrizer, T.A., et al., Dokl. Akad. Nauk SSSR, 1974, vol. 216, no. 3, p. 599.

    CAS  Google Scholar 

  23. Kislyuk, M.U. and Rozanov, V.V., Kinet. Katal., 1995, vol. 36, no. 1, p. 89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Il’ichev, A.A. Firsova, V.N. Korchak, 2006, published in Kinetika i Kataliz, 2006, Vol. 47, No. 4, pp. 602–609.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Il’ichev, A.N., Firsova, A.A. & Korchak, V.N. Mechanism of CO oxidation in excess H2 over CuO/CeO2 catalysts: ESR and TPD studies. Kinet Catal 47, 585–592 (2006). https://doi.org/10.1134/S002315840604015X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315840604015X

Keywords

Navigation