Skip to main content
Log in

Structure and Thermal Properties of Silver Complexes with 2,2′-Bipyridine and Fluorinated β-Diketonate Ligands

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

New silver complexes [Ag(bipy)(CH3COCHCOR)]x with 2,2′-bipyridine (bipy) and β-diketonate ligands (tfac: R = CF3, x = 2; hfbac: R = C3F7, x = 1) are prepared as part of the search for precursors for the vapor deposition of films and silver nanoparticles. The compounds are characterized by elemental analysis, IR and 1H NMR spectroscopy; their crystal structures are determined by XRD. Both complex are molecular due to the bidentate-cyclic coordination of both ligands. The [Ag(bipy)(hfbac)] molecules are mononuclear due to the steric effect of the extended perfluoroalkyl chain. For L = tfac, a binuclear complex is formed due to the coordination of the methine carbon atom. Thermal properties of the new complexes are studied by TGA and DSC and compared with those of the known hexafluoroacetylacetonate analog [Ag(bipy)(hfac)]2. The temperatures and thermodynamic parameters of melting are determined for all the studied compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16, 2346. https://doi.org/10.1088/0957-4484/16/10/059

    Article  CAS  PubMed  Google Scholar 

  2. N. G. Malalila, H. S. Swai, A. Hilonga, and D. M. Kadam. Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli. Nanotechnol., Sci. Appl., 2017, 10, 1. https://doi.org/10.2147/nsa.s123681

    Article  CAS  Google Scholar 

  3. A. S. , A. Peláez-Vargas, and C. García. Coating and surface treatments on orthodontic metallic materials. Coatings, 2013, 3, 1. https://doi.org/10.3390/coatings3010001

    Article  CAS  Google Scholar 

  4. M. Z. Ahmad, S. Akhter, G. K. Jain, M. Rahman, S. A. Pathan, F. J. Ahmad, and R. K. Khar. Metallic nanoparticles: Technology overview & drug delivery applications in oncology. Expert Opin. Drug Delivery, 2010, 7, 927. https://doi.org/10.1517/17425247.2010.498473

    Article  CAS  PubMed  Google Scholar 

  5. P. J. Rivero, A. Urrutia, J. Goicoechea, and F. J. Arregui. Nanomaterials for functional textiles and fibers. Nanoscale Res. Lett., 2015, 10, 501. https://doi.org/10.1186/s11671-015-1195-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D. Mihov and B. Katerska. Some biocompatible materials used in medical practice. Trakia J. Sci., 2010, 8, 119.

  7. A. L. Paschoal, E. C. Vanâncio, C. Canale Lde, L. da Silva, D. Huerta-Vilca, and J. Motheo Ade. Metallic biomaterials TiN-coated: Corrosion analysis and biocompatibility. Artif. Organs, 2003, 27, 461. https://doi.org/10.1046/j.1525-1594.2003.07241.x

    Article  CAS  PubMed  Google Scholar 

  8. P. Piszczek and A. Radtke. Silver nanoparticles fabricated using chemical vapor deposition and atomic layer deposition techniques: properties, applications and perspectives: Review. In: Noble and Precious Metals – Properties, Nanoscale Effects and Applications Licensee / Eds. M. S. Seehra and A. D. Bristow. IntechOpen, 2018, 187-213. https://doi.org/10.5772/intechopen.71571

    Chapter  Google Scholar 

  9. A. A. Yaqoob, K. U. Mohamad, and N. M. Ibrahim Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications – A review. Appl. Nanosci., 2020, 10, 1369. https://doi.org/10.1007/s13204-020-01318-w

    Article  CAS  Google Scholar 

  10. A. A. Yaqoob, T. Parveen, K. Umar, M. Ibrahim, and M. Nasir. Role of nanomaterials in the treatment of wastewater: A review. Water, 2020, 12, 495. https://doi.org/10.3390/w12020495

    Article  CAS  Google Scholar 

  11. M. A. Bhosale and B. M. Bhanage. Silver nanoparticles: Synthesis, characterization and their application as a sustainable catalyst for organic transformations. Curr. Org. Chem., 2015, 19(8), 708-727. https://doi.org/10.2174/1385272819666150207001154

    Article  CAS  Google Scholar 

  12. N. A. Radzuan, A. B. Sulong, and J. Sahari. A review of electrical conductivity models for conductive polymer composite. Int. J. Hydrog. Energy, 2017, 42(14), 9262.

    Article  CAS  Google Scholar 

  13. S. H. Jeong, H. Choi, J. Y. Kim, and T. W. Lee. Silver-based nanoparticles for surface plasmon resonance in organic optoelectronics. Part. Part. Syst. Charact., 2015, 32(2), 164-175. https://doi.org/10.1002/ppsc.201400117

    Article  CAS  Google Scholar 

  14. C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. Xia. Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics, 2009, 4, 171-179. https://doi.org/10.1007/s11468-009-9088-0

    Article  CAS  Google Scholar 

  15. F. Hoeng, A. Denneulin, and J. Bras. Use of nanocellulose in printed electronics: A review. Nanoscale, 2016, 8(27), 13131. https://doi.org/10.1039/C6NR03054H

    Article  CAS  PubMed  Google Scholar 

  16. I. Sondi, D. V. Goia, and E. Matijevic. Preparation of highly concentrated stable dispersions of monodispered silver nanoparticles. J. Colloid Interface Sci., 2003, 260, 75. https://doi.org/10.1016/S0021-9797(02)00205-9

    Article  CAS  PubMed  Google Scholar 

  17. T. Hatanpää, M. Ritala, and M. Leskelä. Precursors as enablers of ALD technology: Contributions from . Coord. Chem. Rev., 2013, 257, 3297. https://doi.org/10.1016/j.ccr.2013.07.002

    Article  CAS  Google Scholar 

  18. A. Grodzicki, I. Lakomska, P. Piszczek, Szymanska, and E. Szlyk. Copper(I), silver(I) and gold(I) carboxylate complexes as precursors in chemical vapour deposition of thin metallic films. Coord. Chem. Rev., 2005, 249, 2232. https://doi.org/10.1016/j.ccr.2005.05.026

    Article  CAS  Google Scholar 

  19. E. S. Vikulova, I. Yu. Il′in, T. S. Sukhikh, P. K. Artamonova, and N. B. Morozova. Complexes of silver 1,1,1,5,5,6,6,6-octafluorohexane-2,4-dionate with π-donor ligands: Synthesis, structure, and thermal properties. Russ. J. Coord. Chem., 2023, 49, 723. https://doi.org/10.1134/S1070328423600407

    Article  CAS  Google Scholar 

  20. C.-M. Chi and Y.-H. Lu. MOCVD of silver thin films from the (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)-silver[bis(trimethylsilyl)acetylene] complex. Chem. Vap. Deposition, 2007, 1, 117. https://doi.org/10.1002/1521-3862(200105)7:3<117::AID-CVDE117>3.0.CO;2-7

    Article  CAS  Google Scholar 

  21. Z. , N. H. Dryden, X. Li, J. J. Vittal, and R. J. Puddephatt. Chemical vapour deposition of copper or silver from the precursors [M(hfac)(C≡NMe)] [M = Cu, Ag; hfac = CF3C(O)CHC(O)CF3]. J. Mater. Chem., 1995, 5, 303. https://doi.org/10.1039/JM9950500303

    Article  CAS  Google Scholar 

  22. J. A. Darr, M. Poliakoff, W.-S. Li, and A. J. Blake. Hexafluoropentanedionatosilver(I) complexes stabilised by multidentate N-donor ligands: crystal structure of a charge-separated salt species soluble in supercritical carbon dioxide. J. Chem. Soc., Trans., 1997, 17, 2869. https://doi.org/10.1039/A703668J

    Article  Google Scholar 

  23. K. Madajska, L. Dobrzańska, T. Muzioł, and I. B. Szymańska. Silver ionic compounds as a source of metal carriers in the gas phase. , 2022, 227, 116149. https://doi.org/10.1016/j.poly.2022.116149

    Article  CAS  Google Scholar 

  24. E. Szłyk, R. Szczesny, and A. Wojtczak. X-ray structural and gas phase studies of silver(I) perfluorinated carboxylate complexes with 2,2′-bipyridyl as potential precursors for chemical vapour deposition (CVD). Trans., 2010, 39, 1823. https://doi.org/10.1039/b911741e

    Article  CAS  PubMed  Google Scholar 

  25. J. A. Darr, M. Poliakoff, A. J. Blake, and W.-S. Li. Synthesis and properties of polyether adducts of hexafluoropentanedionatosilver(I). Inorg. Chem., 1998, 37, 5491. https://doi.org/10.1021/ic971206c

    Article  CAS  PubMed  Google Scholar 

  26. M. E. Fragala, G. Malandrino, O. Puglisi, and C. Benelli. Synthesis, X-ray structure, and characterization of Ag(hfa)tetraglyme [hfa = hexafluoroacetylacetonate]: A novel adduct for the fabrication of metallic silver based films via in situ self reduction. Chem. Mater., 2000, 12, 290. https://doi.org/10.1021/cm9911215

    Article  CAS  Google Scholar 

  27. C. Xu, T. S. Corbitt, M. J. Hampden-Smith, T. T. Kodas, and E. N. Dueslera. Synthesis and characterization of Lewis-base adducts of 1,1,1,5,5,5-hexafluoroacetylacetonatosiiver(I). J. Chem. Soc., Dalton Trans., 1994, 2841. https://doi.org/10.1039/DT9940002841

    Article  Google Scholar 

  28. D. A. Edwards, M. F. Mahon, K. C. Molloy, and V. Ogrodnik. Aerosol-assisted chemical vapour deposition of silver films from adducts of functionalised silver carboxylates. J. Mater. Chem., 2003, 13, 563. https://doi.org/10.1039/B210085C

    Article  CAS  Google Scholar 

  29. Y. Chi, E. Lay, T.-Y. Chou, Y.-H. Song, and A. J. Carty. Deposition of silver thin films using the pyrazolate complex [Ag(3,5-(CF3)2C3HN2)]3. Chem. Vap. Deposition, 2005, 11, 205. https://doi.org/10.1002/cvde.200406351

    Article  CAS  Google Scholar 

  30. L. Zanotto, F. Benetollo, M. Natali, G. Rossetto, P. Zanella, S. Kaciulis, and A. Mezzi. Facile synthesis and characterization of new β-diketonate silver complexes. Single-crystal structures of (1,1,1,5,5,5-hexafluoro-2,4-pentadionato)(2,2′-bipyridine)silver(I) and (1,1,1,5,5,5-hexafluoro-2,4-pentadionato)(N,N,N′,N′-tetramethylethylenediamine)silver(I) and their use as MOCVD precursors for silver films. Chem. Vap. Deposition, 2004, 10, 207. https://doi.org/10.1002/cvde.200306290

    Article  CAS  Google Scholar 

  31. H. Liu, S. Battiato, A. L. Pellegrino, P. Paoli, P. Rossi, C. Jiménez, G. Malandrino, and D. Muñoz-Rojas. Deposition of metallic silver coatings by Aerosol Assisted MOCVD using two new silver β-diketonate adduct metalorganic precursors. Dalton Trans., 2017, 46, 10986. https://doi.org/10.1039/C7DT01647F

    Article  CAS  PubMed  Google Scholar 

  32. T. F. Mikhailovskaya, A. G. Makarov, N. Y. Selikhova, A. Y. Makarov, E. A. Pritchina, I. Y. Bagryanskaya, E. V. Vorontsova, I. G. Ivanov, V. D. Tikhova, N. P. Gritsan, Yu. G. Slizhov, and A. V. Zibarev. Carbocyclic functionnalization of quinoxalines, their chalcogen congeners 2,1,3-benzothia/selenadiazoles, and related 1,2-diaminobenzenes based on nucleophilic substitution of fluorine. J. Fluor. Chem., 2016, 183, 44-58. https://doi.org/10.1016/j.jfluchem.2016.01.009

    Article  CAS  Google Scholar 

  33. V. D. Tikhova, V. P. Fadeeva, O. N. Nikulicheva, T. A. Dobinskaya, and Yu. M. Deryabina. Determination of fluorine in organic functional materials. Chem. Sustainable Dev., 2022, 30, 640-653, https://doi.org/10.15372/CSD2022427

    Article  Google Scholar 

  34. E. S. Vikulova, T. S. Sukhikh, S. A. Gulyaev, I. Y. Ilyin, and N. B. Morozova. Structural diversity of silver fluorinated β-diketonates: Effect of the terminal substituent and solvent. Molecules, 2022, 27(3), 677. https://www.mdpi.com/1420-3049/27/3/677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D. Czakis-Sulikowska, J. Kałużna, and J. Radwańska-Doczekalska. Thermal studies of new Cu(I) and Ag(I) complexes with bipyridine isomers. J. Therm. Anal. Calorim., 1998, 54(1), 103-113. https://doi.org/10.1023/a:1010164818342

    Article  CAS  Google Scholar 

  36. S. Aslam, A. A. Isab, M. A. Alotaibi, M. Saleem, M. Monim-ul-Mehboob, S. Ahmad, I. Georgieva, and N. Trendafilova. Synthesis, spectroscopic characterization, DFT calculations and antimicrobial properties of silver(I) complexes of 2,2′-bipyridine and 1,10-phenanthroline. Polyhedron, 2016, 115, 212-218. https://doi.org/10.1016/j.poly.2016.04.047

    Article  CAS  Google Scholar 

  37. E. I. Davydova, T. N. Sevast′yanova, A. V. Suvorov, and D. A. Kirichenko. Fiziko-khimicheskoe issledovanie sistemy SiCl4-2,2′-bipiridil (Physicochemical study of the SiCl4-2,2′-bipyridyl system). Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim., 2004, 1, 33-46. [In Russian]

  38. G. M. Sheldrick. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  39. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  40. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42, 339-341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  41. D. Zare, C. Piguet, A. Prescimone, C. E. Housecroft, and E. C. Constable. Positive cooperativity induced by interstrand interactions in silver(I) complexes with α,α′-diimine ligands. Chem. - Eur. J., 2022, 28(42), e202200912. https://doi.org/10.1002/chem.202200912

    Article  Google Scholar 

  42. E. A. Malinina, I. K. Kochneva, V. V. Avdeeva, L. V. Goeva, A. S. Kubasov, and N. T. Kuznetsov. Synthesis and structure of mononuclear copper(II) complexes with azaheterocyclic ligands L (L = Bipy, BPA, and Phen) and dodecahydro-closo-dodecaborate anion [B12H12]2–. Russ. J. Inorg. Chem., 2019, 64, 1210-1219. https://doi.org/10.1134/S0036023619100085

    Article  CAS  Google Scholar 

  43. J. L. Atwood, M. L. Simms, and D. A. Zatko. Bis(2,2′-bipyridine)silver(II) nitrate monohydrate, Ag(N2C10H8)2(NO3)2·H2O. Cryst. Struct. Commun., 1973, 2, 279-282.

  44. X. Liu, Guo, M. L. Fu, X. H. Liu, M. S. Wang, and J. S. Huang. Three novel silver complexes with ligand-unsupported argentophilic interactions and their luminescent properties. Inorg. Chem., 2006, 45(9), 3679-3685. https://doi.org/10.1021/ic0601539

    Article  CAS  PubMed  Google Scholar 

  45. H. L. Gao, Q. Q. Zhang, C. W. Cheung, Y. L. Yi, F. F. Li, J. Qu, S. X. Jiang, X. Y. Shi, and J. Z. Cui. Syntheses, structures and properties of silver(I) complexes constructed from nitrogenous aromatic heterocyclic carboxylic acids and N-donor ligands. Inorg. Chem. Commun., 2014, 46, 194-197. https://doi.org/10.1016/j.inoche.2014.05.017

    Article  CAS  Google Scholar 

  46. H. Schmidbaur and A. Schier. Argentophilic interactions. Angew. Chem., Int. Ed., 2015, 54(3), 746-784. https://doi.org/10.1002/anie.201405936

    Article  CAS  Google Scholar 

  47. J. Jurczyk, C. Glessi, K. Madajska, L. Berger, J. I. K. Nyrud, I. Szymańska, C. Kapusta, M. Tilset, and I. Utke. Vacuum versus ambient pressure inert gas thermogravimetry: A study of silver carboxylates. J. Therm. Anal. Calorim., 2022, 147, 2187–2195. https://doi.org/10.1007/s10973-021-10616-6

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 20-15-00222-P). The authors thank Dr. Karakovskaya for her participation in the primary synthesis and data analysis; Dr. Kurykin (A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences) for the Hhfbac β-diketone synthesis; Multi-Access Chemical Service Center of N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences for conducting the elemental analysis of the samples; and the Ministry of Science and Higher Education of the Russian Federation (internal resources and the XRD Facility of the Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences) for providing the possibility of recording the primary diffraction, spectral, and calorimetric data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Vikulova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 3, 123772.https://doi.org/10.26902/JSC_id123772

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikulova, E.S., Sukhikh, T.S., Barysheva, A.S. et al. Structure and Thermal Properties of Silver Complexes with 2,2′-Bipyridine and Fluorinated β-Diketonate Ligands. J Struct Chem 65, 489–503 (2024). https://doi.org/10.1134/S0022476624030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624030065

Keywords

Navigation