Skip to main content
Log in

Influence of Oxygen Nonstoichiometry on the Structural Stability of La1–xCaxMn0.5Co0.5O3 Complex Oxides (x = 0.2–0.6) Subjected to Heat Treatment in He

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The La1–xCaxMn0.5Co0.5O3 solid solutions (x = 0.2-0.6) are prepared by the Pechini method and characterized by a number of physical and chemical methods. It is shown that the oxygen nonstoichiometry in the samples significantly increases with increasing number of calcium cations in the La sublattice. The thermal analysis of the samples shows that the lattice oxygen is released at ~600 °C for all samples and that its amount increases with increasing calcium content. The in situ powder XRD data obtained in the He atmosphere indicate that the studied solid solutions with ≥ 0.4 are unstable under these conditions and may exhibit partial structural destruction and that the ABO3 complex oxide in the system with x = 0.6 transforms into a phase characterized by the A2BO4 structural type of the Ruddlesden–Popper series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. K. Wang, C. Han, Z. Shao, J. Qiu, S. Wang, and S. Liu. Perovskite oxide catalysts for advanced oxidation reactions. Adv. Funct. Mater., 2021, 31(30). https://doi.org/10.1002/adfm.202102089

    Article  Google Scholar 

  2. J. Yang and Y. Guo. Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane. Chin. Chem. Lett., 2018, 29(2), 252-260. https://doi.org/10.1016/j.cclet.2017.09.013

    Article  CAS  Google Scholar 

  3. L. Yang, Y. Li, Y. Sun, W. Wang, and Z. Shao. Perovskite oxides in catalytic combustion of volatile organic compounds: Recent advances and future prospects. Energy Environ. Mater., 2022, 5(3), 751-776. https://doi.org/10.1002/eem2.12256

    Article  CAS  Google Scholar 

  4. C. Sui, S. Zeng, X. Ma, Y. Zhang, J. Zhang, and X. Xie. Research progress of catalytic oxidation of volatile organic compounds over Mn-based catalysts - A review. Rev. Inorg. Chem., 2023, 43(1), 1-12. https://doi.org/10.1515/revic-2021-0042

    Article  CAS  Google Scholar 

  5. J. A. Dias, M. A. S. Andrade, H. L. S. Santos, M. R. Morelli, and L. H. Mascaro. Lanthanum-based perovskites for catalytic oxygen evolution reaction. ChemElectroChem, 2020, 7(15), 3173-3192. https://doi.org/10.1002/celc.202000451

    Article  CAS  Google Scholar 

  6. Y. Liu, H. Dai, Y. Du, J. Deng, L. Zhang, Z. Zhao, and C. T. Au. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. J. Catal., 2012, 287, 149-160. https://doi.org/10.1016/j.jcat.2011.12.015

    Article  CAS  Google Scholar 

  7. S. Cimino, M. P. Casaletto, L. Lisi, and G. Russo. Pd–LaMnO3 as dual site catalysts for methane combustion. Appl. Catal., A, 2007, 327(2), 238-246. https://doi.org/10.1016/j.apcata.2007.05.021

    Article  CAS  Google Scholar 

  8. Y. Ding, S. Wang, L. Zhang, Z. Chen, M. Wang, and S. Wang. A facile method to promote LaMnO3 perovskite catalyst for combustion of methane. Catal. Commun., 2017, 97, 88-92. https://doi.org/10.1016/j.catcom.2017.04.022

    Article  CAS  Google Scholar 

  9. S. Priyatharshni, S. Rajesh Kumar, C. Viswanathan, and N. Ponpandian. Morphologically tuned LaMnO3 as an efficient nanocatalyst for the removal of organic dye from aqueous solution under sunlight. J. Environ. Chem. Eng., 2020, 8(5), 104146. https://doi.org/10.1016/j.jece.2020.104146

    Article  CAS  Google Scholar 

  10. C. Zhang, W. Hua, C. Wang, Y. Guo, Y. Guo, G. Lu, A. Baylet, and A. Giroir-Fendler. The effect of A-site substitution by Sr, Mg and Ce on the catalytic performance of LaMnO3 catalysts for the oxidation of vinyl chloride emission. Appl. Catal., B, 2013, 134/135, 310-315. https://doi.org/10.1016/j.apcatb.2013.01.031

    Article  CAS  Google Scholar 

  11. J. Wang, Y. Su, X. Wang, J. Chen, Z. Zhao, and M. Shen. The effect of partial substitution of Co in LaMnO3 synthesized by sol–gel methods for NO oxidation. Catal. Commun., 2012, 25, 106-109. https://doi.org/10.1016/j.catcom.2012.04.001

    Article  CAS  Google Scholar 

  12. L. Yang, J. Hu, G. Tian, J. Zhu, Q. Song, H. Wang, and C. Zhang. Efficient catalysts of K and Ce co-doped LaMnO3 for NOx - soot simultaneous removal and reaction kinetics. ACS Omega, 2021, 6(30), 19836-19845. https://doi.org/10.1021/acsomega.1c02565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. J. Barón-González, C. Frontera, J. L. García-Muñoz, J. Blasco, and C. Ritter. Cation order and structural transition in La2MnCoO6. J. Phys. Conf. Ser., 2011, 325, 012007. https://doi.org/10.1088/1742-6596/325/1/012007

    Article  CAS  Google Scholar 

  14. A. J. Barón-González, C. Frontera, J. L. García-Muñoz, B. Rivas-Murias, and J. Blasco. Effect of cation disorder on structural, magnetic and dielectric properties of 2MnCoO6 double perovskite. J. Phys. Condens. Matter, 2011, 23(49), 496003. https://doi.org/10.1088/0953-8984/23/49/496003

    Article  CAS  PubMed  Google Scholar 

  15. S. Yáñez-Vilar, M. Sánchez-Andújar, J. Rivas, and M. A. Señarís-Rodríguez. Influence of the cationic ordering in the dielectric properties of the La2MnCoO6 perovskite. J. Alloys Compd., 2009, 485(1/2), 82-87. https://doi.org/10.1016/j.jallcom.2009.05.103

    Article  CAS  Google Scholar 

  16. Z. Yang, L. Ye, and X. Xie. Electronic and magnetic properties of the perovskite oxides: LaMn1–xCoxO3. Phys. Rev. B, 1999, 59(10), 7051-7057. https://doi.org/10.1103/physrevb.59.7051

    Article  CAS  ADS  Google Scholar 

  17. D. V. Karpinsky, I. O. Troyanchuk, A. P. Sazonov, and O. A. Savelieva, A. Heinemann. High resolution diffraction and small angle scattering neutron investigations of LaCo0.5Mn0.5O3+: effect of oxygen content. Eur. Phys. J. B, 2007, 60(3), 273-279. https://doi.org/10.1140/epjb/e2007-00349-2

    Article  CAS  ADS  Google Scholar 

  18. M. S. Alom and F. Ramezanipour. Vacancy effect on the electrocatalytic activity of LaMn1/2Co1/2O3−δ for hydrogen and oxygen evolution reactions. Chem. Commun., 2023, 59(39), 5870-5873. https://doi.org/10.1039/d3cc00961k

    Article  CAS  Google Scholar 

  19. R. C. Sahoo, S. Das, D. Daw, R. Singh, A. Das, and T. K. Nath. Tuning of multi-magnetic phase and exchange bias effect by antisite disorder in Ca-doped La2CoMnO6 double perovskites. J. Phys. Condens. Matter, 2021, 33(21), 215804. https://doi.org/10.1088/1361-648x/abead0

    Article  CAS  ADS  Google Scholar 

  20. Q. Li, L. Xing, and M. Xu. Electrical transport properties and enhanced magnetoresistance effect in double perovskite La2–xCaxCoMnO6 (0 ≤ x ≤ 0.5). Phys. Status Solidi, 2017, 254(9). https://doi.org/10.1002/pssb.201600757

    Article  Google Scholar 

  21. J. R. Jesus, L. Bufaiçal, and E. M. Bittar. The spontaneous exchange bias effect in La2–xCaxCoMnO6 series. J. Magn. Magn. Mater., 2022, 556, 169402. https://doi.org/10.1016/j.jmmm.2022.169402

    Article  CAS  Google Scholar 

  22. R. C. Sahoo and T. K. Nath. Size modulated structural and magnetic properties of nanosized double perovskite La1.5Ca0.5CoMnO6. AIP Conf. Proc., 2017, 050045. https://doi.org/10.1063/1.4980278

    Book  Google Scholar 

  23. R. Li, F. Jin, Y. Zhang, B. Niu, J. Liu, and T. He. Performance and optimization of perovskite-type La1.4Ca0.6CoMnO5+ cathode for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy, 2019, 44(16), 8467-8478. https://doi.org/10.1016/j.ijhydene.2019.01.296

    Article  CAS  Google Scholar 

  24. O. Nikolaeva, A. Kapishnikov, and E. Gerasimov. Structural insight into La0.5Ca0.5Mn0.5Co0.5O3 decomposition in the methane combustion process. Nanomaterials, 2021, 11(9), 2283. https://doi.org/10.3390/nano11092283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. V. Tsybulya, S. V. Cherepanova, and L. P. Soloviyova. Polycrystal software package for IBM/PC. J. Struct. Chem., 1996, 37(2), 332-334. https://doi.org/10.1007/bf02591064

    Article  Google Scholar 

  26. D. Grier and G. McCarthy. North Dakota State University, Fargo, North Dakota, USA, ICDD Grant-in-Aid 1991. In: Powder Diffraction File, International Center for Diffraction Data, 1994.

  27. S. Faaland, K. D. Knudsen, M.-A. Einarsrud, L. Rørmark, and R. Høier, T. Grande. Structure, stoichiometry, and phase purity of calcium substituted lanthanum manganite powders. J. Solid State Chem., 1998, 140(2), 320-330. https://doi.org/10.1006/jssc.1998.7894

    Article  CAS  ADS  Google Scholar 

  28. A. N. Nadeev, S. V. Tsybulya, E. Y. Gerasimov, N. A. Kulikovskaya, and L. A. Isupova. Structural features of the formation of La1–xCaxFeO3– (0 ≤ x ≤ 0.7) hetero valent solid solutions. J. Struct. Chem., 2010, 51(5), 891-897. https://doi.org/10.1007/s10947-010-0135-7

    Article  CAS  Google Scholar 

  29. A. V. Kapishnikov, E. Y. Gerasimov, I. P. Prosvirin, O. A. Nikolaeva, L. A. Isupova, and S. V. Tsybulya. Structural stability of perovskite La0.5Ca0.5Mn0.5Co0.5O3 in the media with different partial pressures of oxygen. J. Struct. Chem., 2021, 62(5), 762-770. https://doi.org/10.1134/s0022476621050127

    Article  CAS  Google Scholar 

  30. U. Lehmann and H. Müller-Buschbaum. Ein Beitrag zur Chemie der Oxocobaltate(II): La2CoO4, Sm2CoO4. Z. Anorg. Allg. Chem., 1980, 470(1), 59-63. https://doi.org/10.1002/zaac.19804700108

    Article  CAS  Google Scholar 

  31. A. H. Jay, Andrews and K. W. Note on oxide systems pertaining to steel - making furnace slags: FeO–MnO, FeO–MgO, CaO–MnO, MgO–MnO. J. Iron Steel Inst., 1946, 152, 15-18.

  32. E. Y. Gerasimov, V. A. Rogov, I. P. Prosvirin, L. A. Isupova, and S. V. Tsybulya. Microstructural changes in La0.5Ca0.5Mn0.5Fe0.5O3 solid solutions under the influence of catalytic reaction of methane combustion. Catalysts, 2019, 9(6), 563. https://doi.org/10.3390/catal9060563

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 23-23-00535) and was performed using the equipment of the Shared Research Center “National Center of Investigation of Catalysts” at the Boreskov Institute of Catalysis Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Gerasimov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 1, 120613.https://doi.org/10.26902/JSC_id120613

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapishnikov, A.V., Bespalko, Y.N., Shuvarakova, E.I. et al. Influence of Oxygen Nonstoichiometry on the Structural Stability of La1–xCaxMn0.5Co0.5O3 Complex Oxides (x = 0.2–0.6) Subjected to Heat Treatment in He. J Struct Chem 65, 107–116 (2024). https://doi.org/10.1134/S0022476624010104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624010104

Keywords

Navigation