Skip to main content
Log in

HYDROGEN BONDING IN THE CRYSTAL OF 1,1′-((1E,1′E)-(PYRIDINE-3,4-DIYLBIS (AZANYLYLIDENE))BIS(METHANYLYLIDENE))- BIS(NAPHTHALEN-2-OL) ACETONITRILE SOLVATE: COMBINED EXPERIMENTAL AND THEORETICAL STUDY

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The title compound, 1,1′-((1E,1′E)-(pyridine-3,4-diylbis(azanylylidene))bis(methanylylidene))bis (naphthalen-2-ol) (1), was synthesized and structurally characterized. The compound cocrystallized with one MeCN molecule. Interestingly, one of two salicylaldehyde Schiff base fragments exists in enol form, while the other one - in a ketone form. Moreover, cocrystallized acetonitrile molecule forms hydrogen bonding with three hydrogen atoms of the dye molecule. The nature and energies of intermolecular and intramolecular hydrogen bonds were studied theoretically using DFT calculations and topological analysis of the electron density distribution within the formalism of Bader′s theory (QTAIM method).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. O. V. Repina, A. S. Novikov, O. V. Khoroshilova, A. S. Kritchenkov, A. A. Vasin, and A. G. Tskhovrebov. Inorg. Chim. Acta, 2020, 502, 119378. https://doi.org/10.1016/j.ica.2019.119378

    Article  CAS  Google Scholar 

  2. A. G. Tskhovrebov, A. S. Novikov, O. V. Odintsova, V. N. Mikhaylov, V. N. Sorokoumov, T. V. Serebryanskaya, and G. L. Starova. J. Organomet. Chem., 2019, 886, 71-75. https://doi.org/10.1016/j.jorganchem.2019.01.023

    Article  CAS  Google Scholar 

  3. M. D. Cohen and G. M. J. Schmidt. J. Phys. Chem., 1962, 66(12), 2442-2446. https://doi.org/10.1021/j100818a030

    Article  CAS  Google Scholar 

  4. A. G. Tskhovrebov, E. Solari, R. Scopelliti, and K. Severin. Organometallics, 2014, 33(10), 2405-2408. https://doi.org/10.1021/om500333y

    Article  CAS  Google Scholar 

  5. V. I. Minkin, A. V. Tsukanov, A. D. Dubonosov, and V. A. Bren. J. Mol. Struct., 2011, 998(1-3), 179-191. https://doi.org/10.1016/j.molstruc.2011.05.029

    Article  CAS  Google Scholar 

  6. M. Sliwa, N. Mouton, C. Ruckebusch, L. Poisson, A. Idrissi, S. Aloïse, L. Potier, J. Dubois, O. Poizat, and G. Buntinx. Photochem. Photobiol. Sci., 2010, 9(5), 661. https://doi.org/10.1039/b9pp00207c

    Article  CAS  PubMed  Google Scholar 

  7. M. Sliwa, N. Mouton, C. Ruckebusch, S. Aloïse, O. Poizat, G. Buntinx, R. Métivier, K. Nakatani, H. Masuhara, and T. Asahi. J. Phys. Chem. C, 2009, 113(27), 11959-11968. https://doi.org/10.1021/jp901849a

    Article  CAS  Google Scholar 

  8. A. A. Astafiev, O. V. Repina, B. S. Tupertsev, A. A. Nazarov, M. R. Gonchar, A. V. Vologzhanina, V. G. Nenajdenko, A. S. Kritchenkov, V. N. Khrustalev, V. N. Nadtochenko, and A. G. Tskhovrebov. Molecules, 2021, 26(6), 1739. https://doi.org/10.3390/molecules26061739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. G. Tskhovrebov, A. S. Novikov, B. S. Tupertsev, A. A. Nazarov, A. A. Antonets, A. A. Astafiev, A. S. Kritchenkov, A. S. Kubasov, V. G. Nenajdenko, and V. N. Khrustalev. Inorg. Chim. Acta, 2021, 522, 120373. https://doi.org/10.1016/j.ica.2021.120373

    Article  CAS  Google Scholar 

  10. A. G. Tskhovrebov, A. A. Vasileva, R. Goddard, T. Riedel, P. J. Dyson, V. N. Mikhaylov, T. V. Serebryanskaya, V. N. Sorokoumov, and M. Haukka. Inorg. Chem., 2018, 57(3), 930-934. https://doi.org/10.1021/acs.inorgchem.8b00072

    Article  CAS  PubMed  Google Scholar 

  11. D. R. Williams. Chem. Rev., 1972, 72(3), 203-213. https://doi.org/10.1021/cr60277a001

    Article  CAS  PubMed  Google Scholar 

  12. A. Wodajo, A. G. Tskhovrebov, T. A. Le, A. S. Kubasov, M. M. Grishina, O. N. Krutius, and V. N. Khrustalev. Acta Crystallogr., Sect. E: Crystallogr. Commun., 2020, 76(10), 1579-1581. https://doi.org/10.1107/S2056989020012104

    Article  CAS  Google Scholar 

  13. A. G. Tskhovrebov, A. S. Novikov, and V. N. Khrustalev. J. Struct. Chem., 2021, 62(3), 460-466. https://doi.org/10.1134/S0022476621030136

    Article  CAS  Google Scholar 

  14. J.-D. Chai and M. Head-Gordon. Phys. Chem. Chem. Phys., 2008, 10(44), 6615. https://doi.org/10.1039/b810189b

    Article  CAS  PubMed  Google Scholar 

  15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Had, and D. J. Fox. Gaussian09. Wallingford CT: Gaussian, Inc., 2010.

  16. R. F. W. Bader. Chem. Rev., 1991, 91(5), 893-928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  17. T. Lu and F. Chen. J. Comput. Chem., 2012, 33(5), 580-592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  18. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke. J. Appl. Crystallogr., 2015, 48(1), 3-10. https://doi.org/10.1107/S1600576714022985

    Article  CAS  Google Scholar 

  19. G. M. Sheldrick. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64(1), 112-122. https://doi.org/10.1107/S0108767307043930

    Article  Google Scholar 

  20. G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  21. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  22. E. Espinosa, E. Molins, and C. Lecomte. Chem. Phys. Lett., 1998, 285(3/4), 170-173. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  23. M. V. Vener, A. N. Egorova, A. V. Churakov, and V. G. Tsirelson. J. Comput. Chem., 2012, 33(29), 2303-2309. https://doi.org/10.1002/jcc.23062

    Article  CAS  PubMed  Google Scholar 

  24. I. Rozas, I. Alkorta, and J. Elguero. J. Am. Chem. Soc., 2000, 122(45), 11154-11161. https://doi.org/10.1021/ja0017864

    Article  CAS  Google Scholar 

  25. T. Steiner. Angew. Chem., Int. Ed., 2002, 41(1), 48-76. https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U

    Article  CAS  Google Scholar 

  26. V. N. Mikhaylov, V. N. Sorokoumov, A. S. Novikov, M. V. Melnik, A. G. Tskhovrebov, and I. A. Balova. J. Organomet. Chem., 2020, 912, 121174. https://doi.org/10.1016/j.jorganchem.2020.121174

    Article  CAS  Google Scholar 

  27. V. Mikhaylov, V. Sorokoumov, D. Liakhov, A. Tskhovrebov, and I. Balova. Catalysts, 2018, 8(4), 141. https://doi.org/10.3390/catal8040141

    Article  CAS  Google Scholar 

  28. N. G. Shikhaliyev, A. M. Maharramov, G. T. Suleymanova, A. A. Babazade, V. G. Nenajdenko, V. N. Khrustalev, A. S. Novikov, and A. G. Tskhovrebov. Mendeleev Commun., 2021, 31(5), 677-679. https://doi.org/10.1016/j.mencom.2021.09.028

    Article  CAS  Google Scholar 

  29. I. V. Buslov, A. S. Novikov, V. N. Khrustalev, M. V. Grudova, A. S. Kubasov, Z. V. Matsulevich, A. V. Borisov, J. M. Lukiyanova, M. M. Grishina, A. A. Kirichuk, T. V Serebryanskaya, A. S. Kritchenkov, and A. G. Tskhovrebov. Symmetry (Basel), 2021, 13(12), 2350. https://doi.org/10.3390/sym13122350

    Article  CAS  Google Scholar 

  30. M. V. Grudova, V. N. Khrustalev, A. S. Kubasov, P. V. Strashnov, Z. V. Matsulevich, J. M. Lukiyanova, G. N. Borisova, A. S. Kritchenkov, M. M. Grishina, A. A. Artemjev, I. V. Buslov, V. K. Osmanov, V. G. Nenajdenko, N. Q. Trung, A. V Borisov, and A. G. Tskhovrebov. Cryst. Growth Des., 2021, acs.cgd.1c00954. https://doi.org/10.1021/acs.cgd.1c00954

    Article  CAS  Google Scholar 

  31. V. N. Khrustalev, M. M. Grishina, Z. V. Matsulevich, J. M. Lukiyanova, G. N. Borisova, V. K. Osmanov, A. S. Novikov, A. A. Kirichuk, A. V. Borisov, E. Solari, and A. G. Tskhovrebov. Dalton Trans., 2021, 50(31), 10689-10691. https://doi.org/10.1039/D1DT01322J

    Article  CAS  PubMed  Google Scholar 

  32. E. Espinosa, I. Alkorta, J. Elguero, and E. Molins. J. Chem. Phys., 2002, 117(12), 5529-5542. https://doi.org/10.1063/1.1501133

    Article  CAS  Google Scholar 

  33. E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, and W. Yang. J. Am. Chem. Soc., 2010, 132(18), 6498-6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan, and W. Yang. J. Chem. Theory Comput., 2011, 7(3), 625-632. https://doi.org/10.1021/ct100641a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding for this research was provided by RFBR (project number 20-53-00006) and Belarusian Foundation for Fundamental Research (grant X20P-066).

This work was supported by the RUDN University Strategic Academic Leadership Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Tskhovrebov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 4, pp. 510-512.https://doi.org/10.26902/JSC_id91711

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardaleishvili, I.R., Vologzhanina, A.V., Novikov, A.S. et al. HYDROGEN BONDING IN THE CRYSTAL OF 1,1′-((1E,1′E)-(PYRIDINE-3,4-DIYLBIS (AZANYLYLIDENE))BIS(METHANYLYLIDENE))- BIS(NAPHTHALEN-2-OL) ACETONITRILE SOLVATE: COMBINED EXPERIMENTAL AND THEORETICAL STUDY. J Struct Chem 63, 626–633 (2022). https://doi.org/10.1134/S002247662204014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662204014X

Keywords

Navigation