Skip to main content
Log in

COMPARISON OF DIFFERENT COMPUTATIONAL APPROACHES FOR UNVEILING THE HIGH-PRESSURE BEHAVIOR OF ORGANIC CRYSTALS AT A MOLECULAR LEVEL. CASE STUDY OF TOLAZAMIDE POLYMORPHS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

This article has been updated

Abstract

The study of the high-pressure behavior of molecular crystals helps find limits of their stability, as well as obtain previously unknown new phases. This may result in the creation of new materials and their forms for a variety of applications: pharmaceutics, optoelectronics, etc. Nevertheless, until recently, there was no practical unified scheme for high-pressure studies of organic molecules, paying close attention to various inter- and intramolecular interactions. In this work, we compare different computational methods for the high-pressure research of molecular crystals in terms of the energy of particular interactions. Tolazamide polymorphs are taken as a representative system. It is shown that not only “structure-forming” interactions, e.g. H-bonds and stacking interactions, but also multiple van der Waals interactions should be taken into account. Moreover, we compare two different concepts for studying particular H-bonds in terms of absolute and relative energies, showing their importance in understanding the high-pressure behavior of tolazamide polymorphs. Finally, several important details about the high-pressure research of organic crystals at a molecular level by computational methods are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 28 October 2020

    Added ESM information into HTML version of the Article.

REFERENCES

  1. J. Bernstein. Polymorphism in Molecular Crystals. Vol. 14. Oxford University Press: New York, 2002.

  2. A. J. Cruz-Cabeza, S. M. Reutzel-Edens, and J. Bernstein. Chem. Soc. Rev., 2015, 44, 8619–8635.

  3. L. McGregor, D. A. Rychkov, P. L. Coster, S. Day, V. A. Drebushchak, A. F. Achkasov, G. S. Nichol, C. R. Pulham, and E. V. Boldyreva. CrystEngComm, 2015, 17, 6183–6192.

  4. V. A. Drebushchak, L. McGregor, and D. A. Rychkov. J. Therm. Anal. Calorim., 2017, 127, 1807–1814.

  5. E. S. Vikulova, K. V. Zherikova, D. A. Piryazev, I. V. Korol′kov, N. B. Morozova, and I. K. Igumenov. J. Struct. Chem., 2017, 58(8), 1681–1684.

  6. A. Ramazani, H. Ahankar, K. Ślepokura, T. Lis, and S. W. Joo. J. Struct. Chem., 2019, 60(4), 662–670.

  7. D. P. Gerasimova, A. F. Saifina, D. V. Zakharychev, I. I. Vandyukova, P. P. Faizulin, A. R. Kurbangalieva, and O. A. Lodochnikova. J. Struct. Chem., 2020, 61(3), 476.

  8. Y. Liu, B. Gabriele, R. J. Davey, and A. J. Cruz-Cabeza. J. Am. Chem. Soc., 2020, jacs.0c00321.

  9. I. Orgzall, F. Emmerling, B. Schulz, and O. Franco. J. Phys. Condens. Matter, 2008, 20, 295206.

  10. B. A. Zakharov and E. V. Boldyreva. CrystEngComm, 2019, 21, 10–22.

  11. C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward, Acta Crystallogr., Sect. B, 2016, 72, 171–179.

  12. Y. V. Seryotkin, T. N. Drebushchak, and E. V. Boldyreva. Acta Crystallogr., Sect. B, 2013, 69, 77–85.

  13. X. D. Wen, R. Hoffmann, and N. W. Ashcroft. J. Am. Chem. Soc., 2011, 133, 9023–9035.

  14. S. Block, C. E. Weir, and G. J. Piermarini. Science, 1970, 169, 586–587.

  15. F. P. A. Fabbiani, D. R. Allan, W. I. F. David, S. A. Moggach, S. Parsons, and C. R. Pulham. CrystEngComm, 2004, 6, 504–511.

  16. S. J. Smith, M. M. Bishop, J. M. Montgomery, T. P. Hamilton, and Y. K. Vohra. J. Phys. Chem. A, 2014, 118, 6068–6077.

  17. M. A. Neumann, J. van de Streek, F. P. A. Fabbiani, P. Hidber, and O. Grassmann. Nat. Commun., 2015, 6, 7793.

  18. R. D. L. Johnstone, A. R. Lennie, S. F. Parker, S. Parsons, E. Pidcock, P. R. Richardson, J. E. Warren, and P. A. Wood. CrystEngComm, 2010, 12, 1065.

  19. D. A. Rychkov. Crystals, 2020, 10, 81.

  20. D. A. Rychkov, J. Stare, and E. V. Boldyreva. Phys. Chem. Chem. Phys., 2017, 19, 6671–6676.

  21. P. A. Wood, D. Francis, W. G. Marshall, S. A. Moggach, S. Parsons, E. Pidcock, and A. L. Rohl. CrystEngComm, 2008, 10, 1154.

  22. L. B. Munday, P. W. Chung, B. M. Rice, and S. D. Solares. J. Phys. Chem. B, 2011, 115, 4378–4386.

  23. N. Giordano, C. M. Beavers, K. V. Kamenev, W. G. Marshall, S. A. Moggach, S. D. Patterson, S. J. Teat, J. E. Warren, P. A. Wood, and S. Parsons. CrystEngComm, 2019, 21, 4444–4456.

  24. P. Kumar, M. K. Cabaj, and P. M. Dominiak. Crystals, 2019, 9, 668.

  25. Y. Gao and K. W. Olsen. J. Pharm. Sci., 2015, 104, 2132–2141.

  26. A. M. Hendriks, D. Schrijnders, N. Kleefstra, E. G. E. de Vries, H. J. G. Bilo, M. Jalving, and G. W. D. Landman. Eur. J. Pharmacol., 2019, 861, 172598.

  27. W. Lv, X. Wang, Q. Xu, and W. Lu. Curr. Top. Med. Chem., 2020, 20, 37–56.

  28. E. V. Boldyreva, S. G. Arkhipov, T. N. Drebushchak, V. A. Drebushchak, E. A. Losev, A. A. Matvienko, V. S. Minkov, D. A. Rychkov, Y. V. Seryotkin, J. Stare, B. A. Zakharova, and B. A. Zakharov. Chem. – Eur. J., 2015, 21, 15395–15404.

  29. A. Y. Fedorov, D. A. Rychkov, E. A. Losev, B. A. Zakharov, J. Stare, and E. V. Boldyreva. CrystEngComm, 2017, 19, 2243–2252.

  30. A. Y. Fedorov, D. A. Rychkov, E. A. Losev, T. N. Drebushchak, and E. V. Boldyreva. Acta Crystallogr. Sect. C, 2019, 75, 598–608.

  31. M. Karakaya, Y. Sert, M. Kürekçi, B. Eskiyurt, and Ç. Çırak. J. Mol. Struct., 2015, 1095, 87–95.

  32. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. CrystalExplorer17. University of Western Australia, 2017.

  33. D. Jayatilaka, D. J. Grimwood. In: Computational Science – ICCS 2003 / Eds. P. M. A. Sloot, D. Abramson, A. V. Bogdanov, Y. E. Gorbachev, J. J. Dongarra, and A. Y. Zomaya. Lecture Notes in Computer Science, vol. 2660. Springer: Berlin, Heidelberg, 2003, 142–151.

  34. M. J. Turner, S. Grabowsky, D. Jayatilaka, Berlin, Heidelberg: M. A. Spackman. J. Phys. Chem. Lett., 2014, 5, 4249–4255.

  35. C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, Berlin, Heidelberg: M. A. Spackman. IUCrJ, 2017, 4, 575–587.

  36. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D.J. Fox. Gaussian 09, Revision A.02. Gaussian, Inc.: Wallingford CT, 2016.

  37. Y. Zhao and D. G. Truhlar. Theor. Chem. Acc., 2008, 120, 215–241.

  38. M. Walker, A. J. A. Harvey, A. Sen, and C. E. H. Dessent. J. Phys. Chem. A, 2013, 117, 12590–12600.

  39. F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt, and J. H. van Lenthe. Chem. Rev., 1994, 94, 1873–1885.

  40. D. Rychkov, S. Arkhipov, and E. Boldyreva. Acta Crystallogr., Sect. B, 2016, 72, 160–163.

  41. C. Tantardini, S. G. Arkipov, K. A. Cherkashina, A. S. Kil′met′ev, and E. V. Boldyreva. Struct. Chem., 2018, 29, 1867–1874.

  42. S. G. Arkhipov, P. S. Sherin, A. S. Kiryutin, V. A. Lazarenko, and C. Tantardini. CrystEngComm, 2019, 21, 5392–5401.

  43. A. Y. Fedorov, T. N. Drebushchak, and C. Tantardini. Comput. Theor. Chem., 2019, 1157, 47–53.

Download references

Funding

This work was supported by the Russian Science Foundation (http://rscf.ru/en/) (project 18-73-00154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Rychkov.

Ethics declarations

The authors declare that they have no conflict of interests.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, A.Y., Rychkov, D.A. COMPARISON OF DIFFERENT COMPUTATIONAL APPROACHES FOR UNVEILING THE HIGH-PRESSURE BEHAVIOR OF ORGANIC CRYSTALS AT A MOLECULAR LEVEL. CASE STUDY OF TOLAZAMIDE POLYMORPHS. J Struct Chem 61, 1356–1366 (2020). https://doi.org/10.1134/S0022476620090024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620090024

Keywords

Navigation