Skip to main content
Log in

Auditory Adaptation to Speech Signal Characteristics

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The review presents experimental data on auditory adaptation to specific speech parameters—temporal (tempo-rhythmic) and spectral characteristics of the speech signal, including the fundamental frequency, vowel formants, timbre features. The aftereffects of the extralinguistic information in spoken language—the gender and age of the speaker, his/her emotional state—are considered. It is shown how adaptation is involved in the segregation of competing speech streams and in the mechanisms of auditory attention. The role of auditory adaptation in the development of speech processing and the occurrence of voice prototypes during ontogenesis are discussed. The main models of speech processing and experimental data on phonemic analysis are presented. The results of experimental and model studies indicate that adaptive processes play an important role in enhancing the signal-background contrast and improve signal identification. It is important to consider the auditory adaptation to specific speech parameters when developing rehabilitation procedures for patients with hearing aids and designing technical speech recognition systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bronkhorst AW (2015) The cocktail-party problem revisited: early processing and selection of multi-talker speech. Attention Perception & Psychophysics 77(5): 1465–1487. https://doi.org/10.3758/s13414-015-0882-9

    Article  Google Scholar 

  2. Qian Ym, Weng C, Chang Xk, Wang S, Yu D (2018) Past review, current progress, and challenges ahead on the cocktail party problem. Front Inf Technol Electronic Eng 19(1): 40–63. https://doi.org/10.1631/FITEE.1700814

    Article  Google Scholar 

  3. Andreeva IG (2018) Spatial Selectivity of Hearing in Speech Recognition in Speech-shaped Noise Environment. Human Physiol 44(2): 226–236. https://doi.org/10.1134/S0362119718020020

    Article  Google Scholar 

  4. Misurelli SM, Litovsky RY (2012) Spatial release from masking in children with normal hearing and with bilateral cochlear implants: Effect of interferer asymmetry. J Acoust Soc Am 132(1): 380–391. https://doi.org/10.1177/1084713808325880

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pérez-González D, Malmierca MS (2014) Adaptation in the auditory system: an overview. Front Integr Neurosci 8: 19. https://doi.org/10.3389/fnint.2014.00019

    Article  PubMed  PubMed Central  Google Scholar 

  6. Auerbach BD, Gritton HJ (2022) Hearing in Complex Environments: Auditory Gain Control, Attention, and Hearing Loss. Front Neurosci 16: 799787. https://doi.org/10.3389/fnins.2022.799787

    Article  PubMed  PubMed Central  Google Scholar 

  7. Licklider JCR (1948) The influence of interaural phase relations upon the masking of speech by white noise. J Acoust Soc Am 20: 150. https://doi.org/10.1121/1.1906358

    Article  Google Scholar 

  8. Durlach NI, Mason CR, Kidd G Jr, Arbogast TL, Colburn HS, Shinn-Cunningham BG (2003) Note on informational masking (L). J Acoust Soc Am 113(6): 2984–2987. https://doi.org/10.1121/1.1570435

    Article  PubMed  Google Scholar 

  9. Brungart DS (2001) Informational and energetic masking effects in the perception of two simultaneous talkers. J Acoust Soc Am 109(3): 1101–1109. https://doi.org/10.1121/1.1345696

    Article  CAS  PubMed  Google Scholar 

  10. Freyman RL, Helfer KS, McCall DD, Clifton RK (1999) The role of perceived spatial separation in the unmasking of speech. J Acoust Soc Am 106(6): 3578–3588. https://doi.org/10.1121/1.428211

    Article  CAS  PubMed  Google Scholar 

  11. Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34(3): 437–446. https://doi.org/10.1016/S0896-6273(02)00659-1

    Article  CAS  PubMed  Google Scholar 

  12. Dean I, Harper NS, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8: 1684–1689. https://doi.org/10.1038/nn1541

    Article  CAS  PubMed  Google Scholar 

  13. Wark B, Lundstrom BN, Fairhall A (2007) Sensory adaptation. Curr Opin Neurobiol 17: 423–429. https://doi.org/10.1016/j.conb.2007.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robinson BL, McAlpine D (2009) Gain control mechanisms in the auditory pathway. Curr Opin Neurobiol 19: 402–407. https://doi.org/10.1016/j.conb.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  15. Rabinowitz NC, Willmore BDB, King AJ, Schnupp JWH (2013) Constructing noise-invariant representations of sound in the auditory pathway. PLoS Biol 11: e1001710. https://doi.org/10.1371/journal.pbio.1001710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mesgarani N, David SV, Fritz JB, Shamma SA (2014) Mechanisms of noise robust representation of speech in primary auditory cortex. Proc Natl Acad Sci USA 111: 6792–6797. https://doi.org/10.1073/pnas.131801711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Narayan R, Best V, Ozmeral E, McClaine E, Dent M, Shinn-Cunningham B, Sen K (2007) Cortical interference effects in the cocktail party problem. Nat Neurosci 10: 1601–1607. https://doi.org/10.1038/nn2009

    Article  CAS  PubMed  Google Scholar 

  18. Moore RC, Lee T, Theunissen FE (2013) Noise-invariant neurons in the avian auditory cortex: hearing the song in noise. PLoS Comput Biol 9: e1002942. https://doi.org/10.1371/journal.pcbi.1002942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schneider DM, Woolley SMN (2013) Sparse and background-invariant coding of vocalizations in auditory scenes. Neuron 79: 141–152. https://doi.org/10.1016/j.neuron.2013.04.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kröger JL, Lutz OHM, Raschke P (2020) Privacy Implications of Voice and Speech Analysis—Information Disclosure by Inference. In: Friedewald M, Önen M, Lievens E, Krenn S, Fricker S (eds) Privacy and Identity Management. Data for Better Living: AI and Privacy. IFIP Advances in Information and Communication Technology. Springer, Cham, 242–258. https://doi.org/10.1007/978-3-030-42504-3_16

    Chapter  Google Scholar 

  21. Jin H, Wang S (2018) Voice-based determination of physical and emotional characteristics of users U.S. Patent No. 10,096,319. Washington, DC: U.S. Patent and Trademark Office. https://www.us.hsbc.com/customer-service/voice

  22. Zwicker E (1964) ‘Negative afterimage’ in hearing. J Acoust Soc Am 36: 2413–2415. https://doi.org/10.1121/1.1919373

    Article  Google Scholar 

  23. Hoke ES, Hoke M, Ross B (1996) Neurophysiological correlate of the auditory after-image ‘Zwicker tone’. Audiol Neuro-Otol 1: 161–174. https://doi.org/10.1159/000259196

    Article  CAS  Google Scholar 

  24. Noren AJ, Eggermont JJ (2003) Neural correlates of an auditory afterimage in primary auditory cortex. J Assoc Res Otolaryngol 4: 312–328.

    Article  Google Scholar 

  25. Micheyl C, Carlyon RP, Gutschalk A, Melcher JR, Oxenham AJ, Rauschecker JP, Tian B, Courtenay WE (2007) The role of auditory cortex in the formation of auditory streams. Hear Res 229: 116–131. https://doi.org/10.1016/j.heares.2007.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  26. Snyder JS, Alain C (2007) Toward a neurophysiological theory of auditory stream segregation. Psychol Bull 133: 780–799. https://doi.org/10.1037/0033-2909.133.5.780

    Article  PubMed  Google Scholar 

  27. Hausfeld L, Riecke L, Valente G, Formisano E (2018) Cortical tracking of multiple streams outside the focus of attention in naturalistic auditory scenes Neuroimage 181: 617–626. https://doi.org/10.1016/j.neuroimage.2018.07.052

  28. Stilp CE (2020) Acoustic context effects in speech perception. Wiley interdisciplinary reviews. Cognit Sci 11(1): 1–18. https://doi.org/10.1002/wcs.1517

    Article  Google Scholar 

  29. Rosenblith WA, Miller GA, Egan JP, Hirsh IJ, Thomas GJ (1947) An auditory afterimage? Science 106: 333–335. https://doi.org/10.1126/science.106.2754.333

    Article  CAS  PubMed  Google Scholar 

  30. Ogorodnikova EA (1978) The effect of selective adaptation on perception of elementary non-speech stimuli. Sechenov Physiol J USSR 64(12): 1803–1807. (In Russ).

    CAS  Google Scholar 

  31. Gutschalk A, Michey C, Oxenham AJ (2008) The pulse-train auditory aftereffect and the perception of rapid amplitude modulations. J Acoust Soc Am 123(2): 935–945. https://doi.org/10.1121/1.2828057

    Article  PubMed  Google Scholar 

  32. Shima S, Murai Y, Hashimoto Y, Yotsumoto Y (2016) Duration Adaptation Occurs Across the Sub- and Supra-Second Systems. Front Psychol 7: 114. https://doi.org/10.3389/fpsyg.2016.00114

    Article  PubMed  PubMed Central  Google Scholar 

  33. Becker MW, Ian P, Rasmussen IP (2007) The rhythm aftereffect: Support for time sensitive neurons with broad overlapping tuning curves. Brain and Cognition 64: 274–281. https://doi.org/10.1016/j.bandc.2007.03.009

    Article  PubMed  Google Scholar 

  34. Masutomi, K, Kashino M (2013) Frequency-change aftereffect produced by adaptation to real and illusory unidirectional frequency sweeps. J Acoust Soc Am 134(1): EL14–EL18.

    Article  PubMed  Google Scholar 

  35. Wang N, Oxenham AJ (2014) Spectral motion contrast as a speech context effect. J Acoust Soc Am 136(3): 1237–1245. https://doi.org/10.1121/1.4892771

    Article  PubMed  PubMed Central  Google Scholar 

  36. Frissen I, Vroomen J, de Gelder B, Bertelson P (2003) The aftereffects of ventriloquism: are they sound-frequency specific? Acta Psychol (Amst) 113(3): 315–327. https://doi.org/10.1016/S0001-6918(03)00043-X

  37. Phillips DP, Hall SE (2005) Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level. Hear Res 202(1–2): 188–199. https://doi.org/10.1016/j.heares.2004.11.001

    Article  PubMed  Google Scholar 

  38. Malinina ES (2014) Perception of approaching and withdrawing sound sources following exposure to broadband noise. The effect of spatial domain. Zh Evol Biokhim Fiziol 50(1): 59–68.

    CAS  PubMed  Google Scholar 

  39. Ehrenstein WH (1978) Direction-specific acoustical aftereffects. J Acoust Soc Am 64 (Suppl 1): S35. https://doi.org/10.1121/1.2004165

    Article  Google Scholar 

  40. Grantham DW, Wightman FL (1979) Detectability of a pulsed tone in the presence of a masker with time-varying interaural correlation. J Acoust Soc Am 65: 1509–1517. https://doi.org/10.1121/1.382915

    Article  CAS  PubMed  Google Scholar 

  41. Andreeva IG, Malinina ES (2010) Auditory Motion Aftereffects of Approaching and Withdrawing Sound Sources. Human Physiol 36(3): 290–294. https://doi.org/10.1134/S0362119710030060

    Article  Google Scholar 

  42. Eimas PD, Corbit JD (1973) Selective adaptation of linguistic feature detectors. Cogn Psychol 4: 99–109. https://doi.org/10.1016/0010-0285(73)90006-6

    Article  Google Scholar 

  43. Landahl KL, Blumstein SE (1982) Acoustic invariance and the perception of place of articulation: a selective adaptation study. J Acoust Soc Am 71(5): 1234–1241. https://doi.org/10.1121/1.387772

    Article  CAS  PubMed  Google Scholar 

  44. Sussman JE (1993) Auditory processing in children’s speech perception: Results of selective adaptation and discrimination tasks. J Speech Hear Res 36(2): 380–395. https://doi.org/10.1044/jshr.3602.380

    Article  CAS  PubMed  Google Scholar 

  45. Schweinberger SR, Casper C, Hauthal N, Kaufmann JM, Kawahara H, Kloth N, Robertson DMC, Simpson AP, Zäske R (2008) Auditory Adaptation in Voice Perception. Curr Biol 18: 684–688. https://doi.org/10.1016/j.cub.2008.04.015

    Article  CAS  PubMed  Google Scholar 

  46. Latinus M, Belin P (2011) Human voice perception. Curr Biol 21: R143–R145. https://doi.org/10.1016/j.cub.2010.12.033

    Article  CAS  PubMed  Google Scholar 

  47. Skuk VG, Schweinberger SR (2013) Adaptation Aftereffects in Vocal Emotion Perception Elicited by Expressive Faces and Voices. PLoS One 8(11): e81691. https://doi.org/10.1371/journal.pone.0081691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bestelmeyer PEG, Mühl C (2021) Individual differences in voice adaptability are specifically linked to voice perception skill. Cognition 210(1): 104582. https://doi.org/10.1016/j.cognition.2021.104582

    Article  PubMed  Google Scholar 

  49. Lublinskaya VV, Ross J (1991) Perception of the temporal structure in speech-like sound sequence. Proc XIIth Int Congress Phon Sci: 318-321.

  50. Darwin CJ, Bethell-Fox CE (1977) Pitch Continuity and Speech Source Attribution. J Exp Psychol: Human Perception and Performance 3(4): 665–672. https://doi.org/10.1037/0096-1523.3.4.665

    Article  Google Scholar 

  51. Dauer RM (1983) Stress-timing and syllable-timing reanalyzed. J Phonet 11: 51–62. https://doi.org/10.1016/S0095-4470(19)30776-4

    Article  Google Scholar 

  52. Lidji P, Palmer C, Peretz I, Morningstar M (2011) Listeners feel the beat: entrainment to English and French speech rhythms. Psychon Bull Rev 18: 1035–1041. https://doi.org/10.3758/s13423-011-0163-0

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lehiste I (1977) Isochrony reconsidered. J Phonet 5: 253–263. https://doi.org/10.1016/S0095-4470 (19)31139-8

    Article  Google Scholar 

  54. Lerdahl F (2001) The sounds of poetry viewed as music. Ann NY Acad Sci 930: 337–354. https://doi.org/10.1111/j.1749-6632.2001.tb05743.x

    Article  CAS  PubMed  Google Scholar 

  55. Obermeier C, Menninghaus W, von Koppenfels M, Raettig T, Schmidt-Kassow M, Otterbein S, Kotz SA (2013) Aesthetic and emotional effects of meter and rhyme in poetry. Front Psychol 4: 10. https://doi.org/10.3389/fpsyg.2013.00010

    Article  PubMed  PubMed Central  Google Scholar 

  56. Obermeier C, Kotz SA, Jessen S Raettig T, Von Koppenfels M, Menninghaus W (2016) Aesthetic appreciation of poetry correlates with ease of processing in event-related potentials. Cogn Affect Behav Neurosci 16: 362–373. https://doi.org/10.3758/s13415-015-0396-x

    Article  PubMed  Google Scholar 

  57. Cummins F (2009) Rhythmas entrainment: the case of synchronous speech. J Phonet 37: 16–28. https://doi.org/10.1016/j.wocn.2008.08.003

    Article  Google Scholar 

  58. Grahn JA (2009) The role of the basal ganglia in beat perception: neuroimaging and neuropsychological investigations. Ann NY Acad Sci 1169: 35–45. https://doi.org/10.1111/j.1749-6632.2009.04553.x

    Article  PubMed  Google Scholar 

  59. Nozaradan S, Schwartze M, Obermeier C, Kotz SA (2017) Specific contributions of basal ganglia and cerebellum to the neural tracking of rhythm. Cortex 95: 156–168. https://doi.org/10.1016/j.cortex.2017.08.015

    Article  PubMed  Google Scholar 

  60. Bóna J (2016) Characteristics of pausing in normal, fast and cluttered speech. Clin Linguist Phon 30 (11): 888–898. https://doi.org/10.1080/02699206.2016.1188421

    Article  PubMed  Google Scholar 

  61. Zäske R, Schweinberger SR, Kaufmann JM, Kawahara H (2009) In the ear of the beholder: neural correlates of adaptation to voice gender. Eur J Neurosci 30: 527–534. https://doi.org/10.1111/j.1460-9568.2009.06839.x

    Article  PubMed  Google Scholar 

  62. Zäske R, Schweinberger SR (2011) You are only as old as you sound: Auditory aftereffects in vocal age perception. Hear Res 282: 283–288. https://doi.org/10.1016/j.heares.2011.06.008

    Article  PubMed  Google Scholar 

  63. Kawahara H, Matsui H (2003) Auditory morphing based on an elastic perceptual distance metric in an interference-free time-frequency representation. Proc 2003 IEEE Int Confer Acoustics, Speech, and Signal Processing (Piscataway, NJ: IEEE) 2003: 256–259. https://doi.org/10.1109/ICASSP.2003.1198766

  64. Belin P, Zatorre RJ (2003) Adaptation to speaker’s voice in right anterior temporal lobe. Neuroreport 14: 2105–2109. https://doi.org/10.1097/01.wnr.0000091689.94870.85

    Article  PubMed  Google Scholar 

  65. Lattner S, Meyer ME, Friederici AD (2005) Voice perception: Sex, pitch, and the right hemisphere. Hum Brain Mapp 24: 11–20. https://doi.org/10.1002/hbm.20065

    Article  PubMed  Google Scholar 

  66. Banse R, Scherer KR (1996) Acoustic profiles in vocal emotion expression. J Pers Soc Psychol 70: 614–636. https://doi.org/10.1037/0022-3514.70.3.614

    Article  CAS  PubMed  Google Scholar 

  67. Montepare J, Koff E, Zaitchik D, Albert M (1999) The use of body movements and gestures as cues to emotions in younger and older adults. J Nonverbal Behav 23: 133–152. https://doi.org/10.1023/A:1021435526134

    Article  Google Scholar 

  68. Dael N, Mortillaro M, Scherer KR (2012) Emotion expression in body action and posture. Emotion 12: 1085–1101. https://doi.org/10.1037/a0025737

    Article  PubMed  Google Scholar 

  69. Grandjean D (2020) Brain networks of emotional prosody processing. Emot Rev 13(1): 34–43. https://doi.org/10.1177/1754073919898522

    Article  Google Scholar 

  70. Bestelmeyer PE, Rouger J, DeBruine LM, Belin P (2010) Auditory adaptation in vocal affect perception. Cognition 117: 217–223. https://doi.org/10.1016/j.cognition.2010.08.008

    Article  PubMed  Google Scholar 

  71. Zäske R, Schweinberger SR, Kawahara H (2010) Voice aftereffects of adaptation to speaker identity. Hear Res 268: 38–45. https://doi.org/10.1016/j.heares.2010.04.011

    Article  PubMed  Google Scholar 

  72. Nussbaum C, von Eiff CI, Skuk VG, Schweinberger SR (2022) Vocal emotion adaptation aftereffects within and across speaker genders: Roles of timbre and fundamental frequency. Cognition 219(7): 104967. https://doi.org/10.1016/j.cognition.2021.104967

    Article  PubMed  Google Scholar 

  73. Latinus M, Belin P (2011) Anti-voice adaptation suggests prototype-based coding of voice identity. Front Psychol 2: 175. https://doi.org/10.3389/fpsyg.2011.00175

    Article  PubMed  PubMed Central  Google Scholar 

  74. Andics A, Mcqueen JM, Petersson KM, Gal V, Rudas G, Vidnyanszky Z (2010) Neural mechanisms for voice recognition. Neuroimage 52(4): 1528–1540. https://doi.org/10.1016/j.neuroimage.2010.05.048

    Article  PubMed  Google Scholar 

  75. Baumann O, Belin P (2010) Perceptual scaling of voice identity: common dimensions for different vowels and speakers. Psychol Res 74: 110–120. https://doi.org/10.1007/s00426-008-0185-z

    Article  PubMed  Google Scholar 

  76. Kuhl PK (2004) Early language acquisition: cracking the speech code. Nat Rev Neurosci 5: 831–843. https://doi.org/10.1038/nrn1533

    Article  CAS  PubMed  Google Scholar 

  77. Kuhl PK, Stevens E, Hayachi A, Deguchi T, Kiritani S, Iverson P (2006) Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Development Sci 9: F13–F21. https://doi.org/10.1111/j.1467-7687.2006.00468.x.

    Article  Google Scholar 

  78. Zhao TC, Kuhl P (2016) Effects of enriched auditory experience on infants’ speech perception during the first year of life. Prospects 46: 235–247. https://doi.org/10.1007/s11125-017-9397-6

    Article  Google Scholar 

  79. Bates E, Thal D, Finlay BL, Clancy B (2002) Early language development and its neural correlates. In: Boller F, Grafman J, Segalowitz, SJ Rapin I (eds) Handbook of Neuropsychol. Amsterdam. 8 (Part II): 109–176.

    Google Scholar 

  80. DeCasper AJ, Fife, WP (1980) Of human bonding: newborns prefer their mothers’ voice. Science 208: 1174–11176. https://doi.org/10.1126/science.7375928

    Article  CAS  PubMed  Google Scholar 

  81. Minagawa-Kawai Y, Mori K, Naoi N, Kojima S (2006) Neural Attunement Processes in Infants during the Acquisition of a Language-Specific Phonemic Contrast. J Neurosci 27(2): 315–321. https://doi.org/10.1523/JNEUROSCI.1984-06.2007

    Article  CAS  Google Scholar 

  82. Kuhl PK, Conboy BT, Coffey-Corina S, Padden D, Rivera-Gaxiola M, Nelson T (2008) Phonetic learning as a pathway to language: New data and native language magnet theory expanded (NLM-e). Philosoph Transact Royal Society Biol Sci 363(1493): 979–1000. https://doi.org/10.1098/rstb.2007.2154

    Article  Google Scholar 

  83. Conboy BT, Kuhl PK (2011) Impact of second-language experience in infancy: Brain measures of first- and second-language speech perception. Development Sci 14(2): 242–248. https://doi.org/10.1111/j.1467-7687.2010.00973.x

    Article  Google Scholar 

  84. Crystal D (2005) The Cambridge Encyclopedia of Language. CUP, Cambridge. ISBN 978-0-521-55967-6.

    Google Scholar 

  85. Webb A, Heller H, Benson C, Lahar A (2015) Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation. Proc Natl Acad Sci USA 112: 3152–3157. https://doi.org/10.1073/pnas.14149241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. DeCasper AJ, Spence MJ (1986) Prenatal maternal speech influences newborns’ perception of speech sounds. Infant Behav Development 9(2): 133–150. https://doi.org/10.1126/science.737592

    Article  Google Scholar 

  87. Lam-Cassettari C, Peter V, Antonioua M (2021) Babies detect when the timing is right: Evidence from event-related potentials to a contingent mother-infant conversation. Dev Cogn Neurosci 48: 100923. https://doi.org/10.1016/j.dcn.2021.100923

    Article  PubMed  PubMed Central  Google Scholar 

  88. Doheny L, Hurwitz S, Insoft R, Ringer S, Lahav A (2012) Exposure to biological maternal sounds improves cardiorespiratory regulation in extremely preterm infants. J Matern Fetal Neonatal Med 25(9): 1591–1594. https://doi.org/10.3109/14767058.2011.648237

    Article  PubMed  Google Scholar 

  89. Randa K, Lahava A (2014) Maternal sounds elicit lower heart rate in preterm newborns in the first month of life. Early Hum Devel 90(10): 679–683. https://doi.org/10.1016/j.earlhumdev.2014.07.016

    Article  Google Scholar 

  90. Chirico G, Cabano R, Villa G, Bigogno A, Ardesi M, Dioni E (2017) Randomised study showed that recorded maternal voices reduced pain in preterm infants undergoing heel lance procedures in a neonatal intensive care unit. Acta Pædiatrica 106(10): 1564–1568. https://doi.org/10.1111/apa.13944

    Article  CAS  PubMed  Google Scholar 

  91. Best K, Bogossian F, New K (2018) Language Exposure of Preterm Infants in the Neonatal Unit: A Systematic Review. Neonatology 114: 261–276. https://doi.org/10.1159/000489600

    Article  PubMed  Google Scholar 

  92. Efendi D, Caswini N, Rustina Y, Iskandar ADP (2018) Combination of Mother Therapeutic Touch (MTT) and Maternal Voice Stimulus (MVS) therapies stabilize sleep and physiological function in preterm infants receiving minor invasive procedures. J Neonat Nursing 24(6): 318–324. https://doi.org/10.1016/j.jnn.2018.08.001

    Article  Google Scholar 

  93. Evans MK, Deliyski DD (2007) Acoustic voice analysis of prelingually deaf adults before and after cochlear implantation. J Voice 21: 669–682. https://doi.org/10.1016/j.jvoice.2006.07.005

    Article  PubMed  Google Scholar 

  94. Ogorodnikova EA, Koroleva IV, Lublinskaja VV, Pak SP, Stoljarova EI, Baljakova AA (2009) Computer in rehabilitation of patients with cochlear implants. Proc 13-th Int Confer “Speech and Computer–SPECOM’2009”. SPIIRAS, SPb, 483–486.

    Google Scholar 

  95. Koroleva IV, Ogorodnikova EA, Pak SP, Levin SV, Balyakova AA, Shaporova AV (2013) Methodological approaches to assessment of the progress of auditory and speech perception in children with cochlear implants. Ross Otorinolaringol 3: 75–85. (In Russ).

    Google Scholar 

  96. Beier LO, Pedroso F, Costa-Ferreira MID (2015) Auditory training benefits to the hearing aids users– a systematic review. Rev CEFAC 17(4): 1327–1332. https://doi.org/10.1590/1982-0216201517422614

    Article  Google Scholar 

  97. Dettman SJ, Dowell R, Choo D, Arnott W, Abrahams Y, Davis A, Dornan D, Leigh J, Constantinescu G, Cowan R, Briggs RJ (2016) Long-term communication outcomes for children receiving cochlear implants younger than 12 months: a multicenter study. Otol Neurotol 37: e82–e95. https://doi.org/10.1097/MAO.0000000000000915

    Article  PubMed  Google Scholar 

  98. Hall ML, Hall WC, Caselli NK (2019) Deaf children need language, not (Just) speech. First Language 39(4): 367–395. https://doi.org/10.1177/0142723719834102

    Article  Google Scholar 

  99. Wie OB, Torkildsen JK, Schauber S, Busch T, Litovsky R (2020) Long-Term Language Development in Children With Early Simultaneous Bilateral Cochlear Implants. Ear and Hearing 41(5): 1294–1305. https://doi.org/10.1097/AUD.0000000000000851

    Article  PubMed  PubMed Central  Google Scholar 

  100. Higgins MB, McCleary EA, Carney AE, Schulte L (2003) Longitudinal changes in children’s speech and voice physiology after cochlear implantation. Ear Hear 24(1): 48–70. https://doi.org/10.1097/01.AUD.0000051846.71105.AF

    Article  PubMed  Google Scholar 

  101. Miller JD, Watson CS, Dubno JR, Leek MR (2015) Evaluation of Speech-Perception Training for Hearing Aid Users: A Multisite Study in Progress. Semin Hear 36(4): 273–283. https://doi.org/10.1055/s-0035-1564453

    Article  PubMed  PubMed Central  Google Scholar 

  102. Beyea JA, McMullen KP, Harris MS, Houston DM, Martin JM, Bolster VA, Adunka OF, Moberly AC (2016) Cochlear Implants in Adults: Effects of Age and Duration of Deafness on Speech Recognition. Otology & Neurotology 37(9): 1238–1245. https://doi.org/10.1097/MAO.0000000000001162

    Article  Google Scholar 

  103. Koroleva IV, Ogorodnikova EA (2019) Modern achievements in cochlear and brainstem auditory implantation. In: Shelepin Yu, Ogorodnikova E, Solovyev N, Yakimova E (eds) Neural Networks and Neurotechnologies. VVM, SPb, 231–249. ISBN 978-5-9651-1259-3

    Google Scholar 

  104. Kovacić D, Balaban E (2009) Voice gender perception by cochlear implantees. J Acoust Soc Am 126(2): 762–775. https://doi.org/10.1121/1.3158855

    Article  PubMed  Google Scholar 

  105. Horga D, Liker M (2006) Voice and pronunciation of cochlear implant speakers. Clinical linguistics & phonetics 20(2–3): 211–217. https://doi.org/10.1080/02699200400027015

    Article  Google Scholar 

  106. Vongpaisal T, Trehub S, Schellenberg EG, Lieshout P (2010) Children With Cochlear Implants Recognize Their Mother’s Voice. Ear and Hearing 31(4): 555–566. https://doi.org/10.1097/AUD.0b013e3181daae5a

    Article  PubMed  Google Scholar 

  107. Coelho AC, Brasolotto AG, Bevilacqua MC, Moret ALM, Bahmad JF (2016) Hearing performance and voice acoustics of cochlear implanted children. Braz J Otorhinolaryngol 82: 70–75. https://doi.org/10.1016/j.bjorl.2015.11.002

    Article  PubMed  Google Scholar 

  108. Elman JL (1979) Perceptual origins of the phoneme boundary effect and selective adaptation to speech: A signal detection theory analysis. J Acoust Soc Am 65: 190–207. https://doi.org/10.1121/1.382235

    Article  CAS  PubMed  Google Scholar 

  109. Cooper WE (1974) Adaptation of phonetic feature analyzers for place of articulation. J Acoust Soc Am 56: 617. https://doi.org/10.1121/1.1903300

    Article  CAS  PubMed  Google Scholar 

  110. Sawusch JR, Jusczyk P (1981) Adaptation and contrast in the perception of voicing J Exp Psychol Hum Percept Perform 7(2): 408–421. https://doi.org/10.1037/0096-1523.7.2.408

  111. Sussman JE, Carney AE (1989) Effects of Transition Length on the Perception of Stop Consonants by Children and Adults. J Speech, Language, and Hearing Res 32(1): 151–160. https://doi.org/10.1044/jshr.3201.151

    Article  CAS  Google Scholar 

  112. Samuel AG, Newport EL (1979) Adaptation of speech by nonspeech: evidence for complex acoustic cue detectors. J Exp Psychol: Hum Percept Perform 5(3): 563–578. https://doi.org/10.1037/h0078136

    Article  CAS  Google Scholar 

  113. Liberman AM, Cooper FS, Shankweiler DP, Studdert-Kennedy M (1967) Perception of the Speech Code. Psychol Rev 74: 431–461. https://doi.org/10.1037/h0020279

    Article  CAS  PubMed  Google Scholar 

  114. McClelland J, Elman J (1986) The TRACE Model of Speech Perception. Cognit Psychol 18: 1–86. https://doi.org/10.1016/0010-0285(86)90015-0

    Article  CAS  PubMed  Google Scholar 

  115. Goldstone L (1994) Influences of categorization on perceptual discrimination. J Exp Psychol 123: 178–200. https://doi.org/10.1037/0096-3445.123.2.178

    Article  CAS  Google Scholar 

  116. Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat RevNeurosci 8(5): 393–402. https://doi.org/10.1038/nrn2113

    Article  CAS  Google Scholar 

  117. Heald SLM, Nusbaum HC (2014) Speech perception as an active cognitive process. Front Systems Neurosci 8: 35. https://doi.org/10.3389/fnsys.2014.00035

    Article  Google Scholar 

  118. Wilder RJ (2018) Investigating Hybrid Models Of Speech Perception. Publ Accessible Penn Dissertat: 3202. https://repository.upenn.edu/edissertations/3202

  119. Ding N, Simon JZ (2013) Adaptive temporal encoding leads to a background insensitive cortical representation of speech. J Neurosci 33: 5728–5735. https://doi.org/10.1523/JNEUROSCI.5297-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kell AJ, McDermott J (2017) Robustness to real-world background noise increases between primary and non-primary human auditory cortex. J Acoust Soc Am 141: 3896. https://doi.org/10.1121/1.4988749

    Article  Google Scholar 

  121. Khalighinejad B, Herrero JL, Mehta AD, Mesgarani N (2019) Adaptation of the human auditory cortex to changing background noise. J Nature Communicat 10: 2509. https://doi.org/10.1038/s41467-019-10611-4

    Article  CAS  Google Scholar 

  122. Chait M, Poeppel D, Simon JZ (2005) Neural response correlates of detection of monaurally and binaurally created pitches in humans. Cereb Cortex 16: 835–848. https://doi.org/10.1093/cercor/bhj027

    Article  PubMed  Google Scholar 

  123. Teki S, Grube M, Kumar S, Griffiths TD (2011) Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci 31: 3805–3812. https://doi.org/10.1523/JNEUROSCI.5561-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Oxenham AJ (2001) Forward masking: Adaptation or integration? J Acoust Soc Am 109: 732–741. https://doi.org/10.1121/1.1336501

    Article  CAS  PubMed  Google Scholar 

  125. Jesteadt W, Bacon SP, Lehman JR (1982) Forward masking as a function of frequency, masker level, and signal delay. J Acoust Soc Am 71: 950–962. https://doi.org/10.1121/1.387576

    Article  CAS  PubMed  Google Scholar 

  126. Malmierca MS, Sanchez-Vives MV, Escera C, Bendixen A (2014) Neuronal adaptation, novelty detection and regularity encoding in audition. Front Syst Neurosci 8: 111. https://doi.org/10.3389/fnsys.2014.00111

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sumner CJ, Palmer AR (2012) Auditory nerve fibre responses in the ferret. Eur J Neurosci 36(4): 2428–2439. https://doi.org/10.1111/j.1460-9568.2012.08151.x

    Article  PubMed  PubMed Central  Google Scholar 

  128. Blank H, Anwander A, von Kriegstein K (2011) Direct structural connections between voice-and face-recognition areas. J Neurosci 31(36): 12906–12915. https://doi.org/10.1523/JNEUROSCI.2091-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Von Kriegstein K, Giraud AL (2006) Implicit multisensory associations influence voice recognition. PLoS Biology 4(10): e326. https://doi.org/10.1371/journal.pbio.0040326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was funded by a grant from the Russian Science Foundation (Project no. 22-25-00068).

Author information

Authors and Affiliations

Authors

Contributions

A.I.G.—development of the idea of work, analysis of data on research problem and writing the artiicle; E.A.O.—analysis of literature data, writing the section on the ontogenetic development of speech function and editing the article.

Corresponding author

Correspondence to I. G. Andreeva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare no apparent or potential conflicts of interest related to the publication of this article.

Additional information

Translated by A. Dyomina

Russian Text © The Author(s), 2022, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2022, Vol. 58, No. 5, pp. 367–381https://doi.org/10.31857/S0044452922050035.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, I.G., Ogorodnikova, E.A. Auditory Adaptation to Speech Signal Characteristics. J Evol Biochem Phys 58, 1293–1309 (2022). https://doi.org/10.1134/S0022093022050027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022050027

Keywords:

Navigation