Skip to main content
Log in

Peculiarities of Age-Related Dynamics of Neurons in the Cat Lateral Geniculate Nucleus as Revealed in Frontal versus Sagittal Slices

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

We carried out a comparative morphometric analysis of neurons in the cat dorsal lateral geniculate nucleus (dLGN) in frontal vs. sagittal slices. Using the SMI-32 antibody to non-phosphorylated domains of heavy-chain neurofilaments, the postnatal dynamic of soma parameters (area, roundness, orientation) of dLGN neurons was studied. Measurements were performed in kittens aged 0, 4, 10, 14, 21, 28, 34, 62, 123 days, and in adult cats. A comparison of data obtained in frontal vs. sagittal slices revealed the following significant differences: (1) the soma area of the immunopositive neurons was smaller in frontal vs. sagittal slices in all age groups, and this difference increased with age; (2) the soma orientation was also different in two cutting planes, and a significant age-related change in the soma orientation occurred only in the sagittal, but not frontal, plane. We assume that the difference in the soma area is due to the spatial arrangement of SMI-32-immunopositive neurons in the dLGN, because of which, in the sagittal plane, in contrast to the frontal, neuronal somas were cut parallel to their long axis. In turn, age-related changes in the soma orientation may reflect an age-related internal rearrangement of the dLGN retinotopic organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Oberlaender M (2019) Neuronal Morphology and Its Significance. In: Singer W, Sejnowski TJ, Rakic P (eds) The Neocortex. The MIT Press, Cambridge, Massachusetts, pp 124–138.

  2. Hendry SHC, Jones EG (1983) The organization of pyramidal and non-pyramidal cell dendrites in relation to thalamic afferent terminations in the monkey somatic sensory cortex. J Neurocytol 12:277–298. https://doi.org/10.1007/BF01148465

    Article  CAS  PubMed  Google Scholar 

  3. Herculano-Houzel S, Manger PR, Kaas JH (2014) Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat 8:1–28. https://doi.org/10.3389/fnana.2014.00077

    Article  Google Scholar 

  4. Zhou J, Blundell J, Ogawa S, Kwon CH, Zhang W, Sinton C, Powell CM, Parada LF (2009) Pharmacological inhibition of mTORCl suppresses anatomical, cellular, and behavioral abnormalities in neural-specific PTEN knock-out mice. J Neurosci 29:1773–1783. https://doi.org/10.1523/JNEUROSCI.5685-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sklair-Tavron L, Shi WX, Lane SB, Harris HW, Bunney BS, Nestler EJ (1996) Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proc Natl Acad Sci USA 93:11202–11207. https://doi.org/10.1073/pnas.93.20.11202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Loopuijt LD, Villablanca JR, Sharifi P (2001) Soma size of substantia nigra neurons increases after a prenatal neocortical lesion in cats. Dev Brain Res 130:143–147. https://doi.org/10.1016/S0165-3806(01)00223-1

    Article  CAS  Google Scholar 

  7. Duffy KR, Slusar JE (2009) Monocular deprivation provokes alteration of the neuronal cytoskeleton in developing cat lateral geniculate nucleus. Vis Neurosci 26:319–28. https://doi.org/10.1017/S0952523809090130

    Article  PubMed  Google Scholar 

  8. Flood DG, Coleman PD (1988) Neuron numbers and sizes in aging brain: Comparisons of human, monkey, and rodent data. Neurobiol Aging 9:453–463. https://doi.org/10.1016/S0197-4580(88)80098-8

    Article  CAS  PubMed  Google Scholar 

  9. Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118:5–36. https://doi.org/10.1007/s00401-009-0532-1

    Article  CAS  PubMed  Google Scholar 

  10. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, Uylings HBM, Friedman L, Rajkowska G (2004) Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 56:640–650. https://doi.org/10.1016/j.biopsych.2004.08.022

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rajković K, Marić DL, Milošević NT, Jeremic S, Arsenijević VA, Rajković N (2016) Mathematical modeling of the neuron morphology using two dimensional images. J Theor Biol 390:80–85. https://doi.org/10.1016/j.jtbi.2015.11.019

    Article  PubMed  Google Scholar 

  12. FitzGibbon T (2006) Does the development of the perigeniculate nucleus support the notion of a hierarchical progression within the visual pathway? Neuroscience 140:529–546. https://doi.org/10.1016/j.neuroscience.2006.02.038

    Article  CAS  PubMed  Google Scholar 

  13. Acciai L, Soda P, Iannello G (2016) Automated Neuron Tracing Methods: An Updated Account. Neuroinformatics 14:353–367. https://doi.org/10.1007/s12021-016-9310-0

    Article  PubMed  Google Scholar 

  14. Garman RH, Li AA, Kaufmann W, Auer RN, Bolon B (2016) Recommended Methods for Brain Processing and Quantitative Analysis in Rodent Developmental Neurotoxicity Studies. Toxicol Pathol 44:14–42. https://doi.org/10.1177/0192623315596858

    Article  CAS  PubMed  Google Scholar 

  15. Burnat K, Van Der Gucht E, Waleszczyk WJ, Kossut M, Arckens L (2012) Lack of early pattern stimulation prevents normal development of the alpha (Y) retinal ganglion cell population in the cat. J Comp Neurol 520:2414–2429. https://doi.org/10.1002/cne.23045

    Article  CAS  PubMed  Google Scholar 

  16. Merkulyeva NS, Mikhalkin AAA, Veshchitskii AAA, Merkul’eva NS, Mikhalkin AAA, Veshchitskii AAA (2016) Characteristics of the Distribution of Acetylcholinesterase in the Posterolateral Nucleus of the Thalamus in Cats. Neurosci Behav Physiol 46:507–509. https://doi.org/10.1007/s11055-016-0267-0

    Article  CAS  Google Scholar 

  17. Mooser F, Bosking WH, Fitzpatrick D (2004) A morphological basis for orientation tuning in primary visual cortex. Nat Neurosci 7:872–879. https://doi.org/10.1038/nn1287

    Article  CAS  PubMed  Google Scholar 

  18. Yan C, Li A, Zhang B, Ding W, Luo Q, Gong H (2013) Automated and Accurate Detection of Soma Location and Surface Morphology in Large-Scale 3D Neuron Images. PLoS One 8:1–12. https://doi.org/10.1371/journal.pone.0062579

    Article  CAS  Google Scholar 

  19. Radojević M, Meijering E (2019) Automated Neuron Reconstruction from 3D Fluorescence Microscopy Images Using Sequential Monte Carlo Estimation. Neuroinformatics 17:423–442. https://doi.org/10.1007/s12021-018-9407-8

    Article  PubMed  Google Scholar 

  20. Lima D, Coimbra A (1986) A Golgi study of the neuronal population of the marginal zone (lamina I) of the rat spinal cord. J Comp Neurol 244:53–71. https://doi.org/10.1002/cne.902440105

    Article  CAS  PubMed  Google Scholar 

  21. Merkulyeva N, Veshchitskii A, Makarov F, Gerasimenko Y, Musienko P (2016) Distribution of 28 kDa calbindin-immunopositive neurons in the cat spinal cord. Front Neuroanat 9:166. https://doi.org/10.3389/fnana.2015.00166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A 80:6126–6130. https://doi.org/10.1073/pnas.80.19.6126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nurzynska K, Mikhalkin A, Piorkowski A (2017) CAS: Cell Annotation Software—Research on Neuronal Tissue Has Never Been so Transparent. Neuroinformatics 15:365–382. https://doi.org/10.1007/s12021-017-9340-2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Piorkowski A, Piórkowski A (2016) A statistical dominance algorithm for edge detection and segmentation of medical images. Adv Intell Syst Comput 471:3–14. https://doi.org/10.1007/978-3-319-39796-2_1

    Article  Google Scholar 

  25. Kutcher MR, Duffy KR (2007) Cytoskeleton alteration correlates with gross structural plasticity in the cat lateral geniculate nucleus. Vis Neurosci 24:775–785. https://doi.org/10.1017/S095252380707068X

    Article  PubMed  Google Scholar 

  26. Quené H, Van Den Bergh H (2004) On multi-level modeling of data from repeated measures designs: A tutorial. Speech Commun 43:103–121. https://doi.org/10.1016/j.specom.2004.02.004

    Article  Google Scholar 

  27. Mikhalkin A, Nikitina N, Merkulyeva N (2020) Heterochrony of postnatal accumulation of nonphosphorylated heavy‐chain neurofilament by neurons of the cat dorsal lateral geniculate nucleus. J Comp Neurol 529(7):1–12. https://doi.org/10.1002/cne.25028

    Article  CAS  Google Scholar 

  28. Feller MB, Scanziani M (2005) A precritical period for plasticity in visual cortex. Curr Opin Neurobiol 15:94–100. https://doi.org/10.1016/j.conb.2005.01.012

    Article  CAS  PubMed  Google Scholar 

  29. Eysel UT, Wolfhard U (1983) Morphological fine tuning of retinotopy within the cat lateral geniculate nucleus. Neurosci Lett 39:15–20. https://doi.org/10.1016/0304-3940(83)90158-1

    Article  CAS  PubMed  Google Scholar 

  30. Bishop PO, Kozak W, Levick WR, Vakkur GJ (1962) The determination of the projection of the visual field on to the lateral geniculate nucleus in the cat. J Physiol 163:503–539. https://doi.org/10.1113/jphysiol.1962.sp006991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sanderson KJ (1971) The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. J Comp Neurol 143:101–117. https://doi.org/10.1002/cne.901430107

    Article  CAS  PubMed  Google Scholar 

  32. Stanford LR, Friedlander MJ, Sherman SM (1983) Morphological and physiological properties of geniculate W-cells of the cat: a comparison with X- and Y-cells. J Neurophysiol 50:582–608. https://doi.org/10.1152/jn.1983.50.3.582

    Article  CAS  PubMed  Google Scholar 

  33. Friedlander MJ, Lin CS, Stanford LR, Sherman SM (1981) Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. J Neurophysiol 46:80–129. https://doi.org/10.1152/jn.1981.46.1.80

    Article  CAS  PubMed  Google Scholar 

  34. Bickford ME, Guido W, Godwin DW (1998) Neurofilament proteins in Y-cells of the cat lateral geniculate nucleus: Normal expression and alteration with visual deprivation. J Neurosci 18:6549–6557. https://doi.org/10.1523/JNEUROSCI.18-16-06549.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duffy KR, Crowder NA, LeDue EE (2012) Investigation of cytoskeleton proteins in neurons of the cat lateral geniculate nucleus. J Comp Neurol 520:186–199. https://doi.org/10.1002/cne.22727

    Article  CAS  PubMed  Google Scholar 

  36. Kalil R (1978) Development of the dorsal lateral geniculate nucleus in the cat. J Comp Neurol 182:265–291. https://doi.org/10.1002/cne.901820206

    Article  CAS  PubMed  Google Scholar 

  37. Elgeti H, Elgeti R, Fleischhauer K (1976) Postnatal growth of the dorsal lateral geniculate nucleus of the cat. Anat Embryol (Berl) 149:1–13. https://doi.org/10.1007/BF00315081

  38. Coleman LA, Friedlander MJ (2002) Postnatal dendritic development of Y-like geniculocortical relay neurons. Int J Dev Neurosci 20:137–159. https://doi.org/10.1016/S0736-5748(02)00018-7

    Article  PubMed  Google Scholar 

  39. Coleman LA, Friedlander MJ (1992) Intracellular injections of permanent tracers in the fixed slice: a comparison of HRP and biocytin. J Neurosci Methods 44:167–177. https://doi.org/10.1016/0165-0270(92)90009-3

    Article  CAS  PubMed  Google Scholar 

  40. Friedlander MJ (1982) Structure of physiologically classified neurones in the kitten dorsal lateral geniculate nucleus. Nature 300:180–183. https://doi.org/10.1038/300180a0

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors are grateful to N.I. Nikitina for her assistance in microscopic studies.

Funding

This work was supported by the Governmental Program 47 “Scientific and Technological Development of the Russian Federation” for 2019–2030, theme 0134-2019-0006 (theoretical part) and the Russian Science Foundation grant No. 21-15-00235 (experimental part).

Author information

Authors and Affiliations

Authors

Contributions

A concept and experimental design: A.A.M. and N.S.M.; data collection and processing: A.A.M.; statistical data treatment: A.A.M.; data analysis and interpretation: A.A.M. and N.S.M.; manuscript writing: A.A.M. and N.S.M.

Corresponding author

Correspondence to A. A. Mikhalkin.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest, both evident and potential, as related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2021, Vol. 57, No. 5, pp. 373–379https://doi.org/10.31857/S0044452921050053.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhalkin, A.A., Merkulyeva, N.S. Peculiarities of Age-Related Dynamics of Neurons in the Cat Lateral Geniculate Nucleus as Revealed in Frontal versus Sagittal Slices. J Evol Biochem Phys 57, 1001–1007 (2021). https://doi.org/10.1134/S0022093021050021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021050021

Keywords:

Navigation