Skip to main content
Log in

Differences in adaptive behaviors of adolescent male and female rats exposed at birth to inflammatory pain or stress

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

In adolescent rats (25–35-day-old) exposed at birth (neonatal days 1 and, repeatedly, 2) to adverse impacts (inflammatory pain, short-term maternal separation stress, or both), sexual dimorphism was found in pain behavior under identical peripheral inflammation conditions. Our priority data indicate an enhancement of pain response in the formalin test in males, whereas in females pain sensitivity did not change, i.e. pain experienced in females at birth did not affect the system reactivity to the same chemical irritant in the adolescent period. However, rats of both sexes exposed to short-term maternal deprivation stress (60 min on neonatal days 1 and 2) exhibited the enhanced pain sensitivity in the formalin test. The combined impact of inflammatory pain and maternal deprivation in neonatal pups did not change pain sensitivity at adolescence both in males and females. Male and female rats exposed to early maternal deprivation exhibited decreased anxiety levels in the elevated plus-maze; rats exposed to each of the above-mentioned early impacts showed a decline in adaptive behavior in the forced swim test; males exposed to pain and combined impacts demonstrated the spatial learning impairment in the Morris labyrinth. Thus, we have pioneered in demonstrating sex-dependent differences in the effect of inflammatory pain in neonatal rat pups on the inflammatory pain sensitivity in adolescent rats. The division of early stress and pain impacts was revealed in adolescent females in the formalin test: while maternal deprivation induced hyperalgesia, pain did not change the tonic nociceptive system functional activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kassil, V.G., Otellin, V.A., Khozhai, L.I., and Kostkin, V.B., Critical phases of the brain development, Ross. Fiziol. Zh. im. I.M. Sechenova, 2000, vol. 86, no. 11, pp. 1418–1425.

    CAS  PubMed  Google Scholar 

  2. Rice, D. and Barone, S., ffixJr., Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models, Environ. Health Perspect., 2000, vol. 108, suppl 3, pp. 511–533.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Horvath, G., Reglodi, D., Farkas, J., Vadasz, G., Mammel, B., Kvarik, T., Bodzai, G., Kiss-Illes, B., Farkas, D., Matkovits, A., Manavalan, S., Gaszner, B., Tamas, A., and Kiss, P., Perinatal positive and negative influences on early neurobehavioral reflex and motor development, Adv. Neurobiol., 2015, vol. 10, pp. 149–67.

    Article  PubMed  Google Scholar 

  4. Knaepen, L., Patijn, J., van Kleef, M., Mulder, M., Tibboel, D., and Joosten, E.A.J., Neonatal repetitive needle pricking: plasticity of the spinal nociceptive circuit and extended postoperative pain in later life, Dev. Neurobiol., 2013, vol. 73, pp. 85–97.

    Article  PubMed  Google Scholar 

  5. Walker, S.M., Biological and neurodevelopmental implications of neonatal pain, Clin. Perinatol., 2013, vol. 40, pp. 471–91.

    Article  PubMed  Google Scholar 

  6. Zouikr, I., Tadros, M.A., Barouei, J., Beagley, K.W., Clifton, V.L., Callister, R.J., and Hodgson, D.M., Altered nociceptive, endocrine, and dorsal horn neuron responses in rats following a neonatal immune challenge, Psychoneuroendocrinol., 2014, vol. 41, pp. 1–12.

    Article  CAS  Google Scholar 

  7. Anand, K.J., Palmer, F.B., and Papanicolaou, A.C., Repetitive neonatal pain and neurocognitive abilities in ex-preterm children, Pain, 2013, vol. 154, pp. 1899–901.

    Article  PubMed  Google Scholar 

  8. Grunau, R.E., Neonatal pain in very preterm infants: long-term effects on brain, neurodevelopment and pain reactivity, Rambam Maimonides Med. J., 2013, vol. 4(4):e0025.doi: 10.5041/RMMJ.10132.

  9. Walker, S.M., Neonatal pain, Paediatr. Anaesth., 2014, vol. 24, pp. 39–48.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Krugers, H.J. and Joëls, M., Long-lasting Consequences of Early Life stress on Brain Structure, Emotion and Cognition, Curr. Top. Behav. Neurosci., 2014, vol. 18, pp. 81–92.

    Article  CAS  PubMed  Google Scholar 

  11. Victoria, N.C., Karom, M.C., Eichenbaum, H., and Murphy, A.Z., Neonatal injury alters markers of pain and stress in rat pups, Dev. Neurobiol., 2014, vol. 74, pp. 42–51.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Y.H, Wang, X.M, and Ennis, M., Effects of neonatal inflammation on descending modulation from the rostroventromedial medulla, Brain Res. Bull., 2010, vol. 83, pp. 16–22.

    Article  PubMed  Google Scholar 

  13. Ranger, M. and Grunau, R.E., Early repetitive pain in preterm infants in relation to the developing brain, Pain Manag., 2014, vol. 4, pp. 57–67.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Schwaller, F. and Fitzgerald, M., The consequences of pain in early life: injury-induced plasticity in developing pain pathways, Eur. J. Neurosci., 2014, vol. 39, pp. 344–52.

    Article  PubMed Central  PubMed  Google Scholar 

  15. LaPrairie, J.L. and Murphy, A.Z., Long term impact of neonatal injury in male and female rats: sex differences, mechanisms and clinical implications, Front. Neuroendocrinol., 2010, vol. 31, pp. 193–202.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ruda, M.A., Ling, Q.D., Hohmann, A.G., Peng, Y.B., and Tachibana, T., Altered nociceptive neuronal circuits after neonatal peripheral inflammation, Science, 2000, vol. 289, pp. 628–631.

    Article  CAS  PubMed  Google Scholar 

  17. Bhutta, A.T., Rovnaghi, C., Simpson, P.M., Gossett, J.M., Scalzo, F.M., and Anand, K.J.S., Interactions of inflammatory pain and morphine in infant rats: long-term behavioral effects, Physiol. Behav., 2001, vol. 73, pp. 51–58.

    Article  CAS  PubMed  Google Scholar 

  18. Lidov, M.S., Long-term effects of neonatal pain on nociceptive systems, Pain, 2002, vol. 99, pp. 337–383.

    Google Scholar 

  19. Ren, K., Anseloni, V., Zou, S.P., Wade, E.B., Novikova, S.I., Ennis, M., Traub, R.J., Gold, M.S., Dubner, R., and Lidov, M.S., Characterization of basal and re-inflammation-associated long-term alteration in pain responsivity following short-lasting neonatal local inflammatory insult, Pain, 2004, pp. 110, pp. 588–596.

    Google Scholar 

  20. Negrigo, A., Medeiros, M., Guinsburg, R., and Covolan, L., Long-term gender behavioral vulnerability after nociceptive neonatal formalin stimulation in rats, Neurosci. Lett., 2011, vol. 190, pp. 196–199.

    Article  Google Scholar 

  21. Dubuisson, D. and Dennis, S.G., The formalin test: a quantitative study of the analgesic effects of morphine, meperidine and brain stimulation in rats and cats, Pain, 1977, vol. 4, pp. 161–174.

    CAS  PubMed  Google Scholar 

  22. Barrot, M., Tests and models of nociception and pain in rodents, Neuroscience, 2012, vol. 211, pp. 39–50.

    Article  CAS  PubMed  Google Scholar 

  23. Johnston, C.C. and Walker, C.-D., The effects of exposure to repeated minor pain during the neonatal period on formalin pain behavior and thermal withdrawal latencies, Pain Res. Manag., 2003, vol. 8, pp. 213–217.

    PubMed  Google Scholar 

  24. Fillingim, R.B., King, C.D., Ribeiro-Dasilva, M.C., Rahim-Williams, B., and Riley 3rd, J.L., Sex, gender, and pain: a review of recent clinical and experimental findings, J. Pain, 2009, vol. 10, pp. 447–485.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Aloisi, A.M. and Sorda, G., Relationship of female sex hormones with pain perception: focus on estrogens, Pain Manag., 2011, vol. 1, pp. 229–238.

    Article  PubMed  Google Scholar 

  26. Hashmi, J.A. and Davis, K.D., Deconstructing sex differences in pain sensitivity, Pain, 2014, vol. 155, pp. 10–13.

    Article  PubMed  Google Scholar 

  27. LaPrairie, J.L. and Murphy, A.Z., Female rats are more vulnerable to the long-term consequences of neonatal inflammatory injury, Pain, 2007, vol. 132, p. 124.

    Article  Google Scholar 

  28. Lima, M., Malheiros, J., Negrigo, A., Tescarollo, F., Medeiros, M., Suchecki, D., Tannus, A., Guinsburg, R., and Covolan, L., Sex-related long-term behavioral and hippocampal cellular alterations after nociceptive stimulation throughout postnatal development in rats, Neuropharmacol., 2014, vol. 77, pp. 268–76.

    Article  CAS  Google Scholar 

  29. Butkevich, I.P., Mikhailenko, V.A., Lavrova, J.A., and Ulanova, N.A., Repeated inflammatory pain syndrome in newborn male rats changes adaptive behavior during adolescent period of development, Ross. Fiziol. Zh. im. I.M. Sechenova, 2014, vol. 100, pp. 1241–1251.

    CAS  PubMed  Google Scholar 

  30. Zimmerman, M., Committee for Research and Ethical Issues of the IASP, Ethical standards for investigations of experimental pain in animals, Pain, 1983, vol. 16, pp. 109–110.

    Article  Google Scholar 

  31. Barr, G.A., Maturation of the biphasic behavioral and heart rate response in the formalin test, Pharmacol. Biochem. Behav., 1998, vol. 60, pp. 329–335.

    Article  CAS  PubMed  Google Scholar 

  32. Porsolt, R.D., LePichon, M., and Jalfre, M., Depression: a new animal model sensitive to antidepressant treatments, Nature, 1977, vol. 266, pp. 730–732.

    Article  CAS  PubMed  Google Scholar 

  33. Morris, R.G.M., Spatial localization does not require the presence of local cues, Learning and Motivation, 1981, vol. 12, pp. 239–260.

    Article  Google Scholar 

  34. Anseloni, V.C., He, F., Novikova, S.I., Turnbach, R.M., Lidov, I.A., Ennis, M., and Lidov, M.S., Alterations in stress-associated behaviors and neurochemical markers in adult rats after neonatal short-lasting local inflammatory insult, Neurosci., 2005, vol. 131, pp. 635–645.

    Article  CAS  Google Scholar 

  35. Li, J. and Baccei, M.L., Neonatal tissue damage facilitates nociceptive synaptic input to the developing superficial dorsal horn via NGF-dependent mechanisms, Pain, 2011, vol. 152, pp. 1846–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Anand, K.J.S. and Scalzo, F.M., Can adverse neonatal experiences alter brain development and subsequent behavior? Biol. Neonate, 2000, vol. 77, pp. 69–82.

    Article  CAS  PubMed  Google Scholar 

  37. Arnold, A.P. and Gorski, R.A., Gonadal steroid induction of structural sex differences in the central nervous system, Ann. Rev. Neurosci., 1984, vol. 7, pp. 413–442.

    Article  CAS  PubMed  Google Scholar 

  38. Weisz, J. and Ward, I.L., Plasma testosterone and progesterone titers of pregnant rats, their male and famale fetuses, and neonatal offspring, Endocrinol., 1980, vol. 106, pp. 306–316.

    Article  CAS  Google Scholar 

  39. Amateau, S.K., Alt, J.J., Stamps, C.L., and Mc-Carthy, M.M., Brain estradiol content in newborn rats: sex differences, regional heterogeneity, and possible de novo synthesis by the female telencephalon, Endocrinol., 2004, vol. 145, pp. 2906–2917.

    Article  CAS  Google Scholar 

  40. Dallman, M.F., Moments in time—the neonatal rat hypothalamo–pituitery–adrenal axis, Neuroendocrinol., 2000, vol. 141, pp. 1590–1592.

    CAS  Google Scholar 

  41. Uhelski, M.L. and Fuchs, P.N., Maternal separation stress leads to enhanced emotional responses to noxious stimuli in adult rats, Behav. Brain Res., 2010, vol. 21, pp. 208–212.

    Article  Google Scholar 

  42. Nishi, M., Horii-Hayashi, N., and Sasagawa, T., Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents, Front. Neurosci., 2014, vol. 8, 166. doi: 10.3389/fnins..00166.

    Article  PubMed Central  PubMed  Google Scholar 

  43. McCormick, C.M., Furcy, B.F., Child, M., Sawyer, M.J., and Donohue, S.M., Neonatal sex hormones have “organizational” effects on the hypothalamic–pituitary–adrenal axis of male rats, Develop. Brain Res., 1998, vol. 105, pp. 295–307.

    Article  CAS  Google Scholar 

  44. Romeo, R.D. and McEwen, B.S., Stress and adolescent brain, Ann. NY Acad. Sci., 2006, vol. 1094, pp. 202–214.

    Article  CAS  PubMed  Google Scholar 

  45. Goel, N., Workman, J.L., Lee, T.T., Innala, L., and Viau, V., Sex differences in the HPA axis, Compr. Physiol., 2014, vol. 4, pp. 1121–1155.

    Article  PubMed  Google Scholar 

  46. Toufexis, D., Rivarola, M.A., Lara, H., and Viau, V., Stress and the reproductive axis, J. Neuroendocrinol., 2014, vol. 26, pp. 573–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Fitzgerald, M. and Koltzenburg, M., The functional development of descending inhibitory pathways in the dorsolateral funiculus of the newborn rat cord, Brain Res., 1986, vol. 389, pp. 261–270.

    Article  CAS  PubMed  Google Scholar 

  48. Rhodes, D.L. and Liebeskind, J.C., Analgesia from rostral brain stem stimulation in the rat, Brain Res., 1978, vol. 143, pp. 521–532.

    Article  CAS  PubMed  Google Scholar 

  49. Bourke, C.H. and Neigh, G.N., Behavioral effects of chronic adolescent stress are sustained and sexually dimorphic, Horm. Behav., 2011, vol. 60, pp. 112–120.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Li, Y.J., Peng, S.L., Wan, C.Q., Cao, L., and Li, Y.P., Chronic pain impairs spatial learning and memory ability and down-regulates Bcl-2 and BDNF mRNA expression in hippocampus of neonatal rats, Zhonghua Er. Ke. Za. Zhi., 2005, vol. 43, pp. 444–448.

    PubMed  Google Scholar 

  51. Anand, K.J.S., Physiology of pain in infants and children, Ann. Nestle., 1999, vol. 57, pp. 7–18.

    Google Scholar 

  52. Narsinghani, U. and Anand, K.J.S., Developmental neurobiology of pain in neonatal rats, Lab. Animal., 2000, vol. 29, pp. 27–39.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Butkevich.

Additional information

Original Russian Text © I.P. Butkevich, V.A. Mikhailenko, E.A. Vershinina, N.A. Ulanova, 2015, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2015, Vol. 51, No. 4, pp. 266—275.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butkevich, I.P., Mikhailenko, V.A., Vershinina, E.A. et al. Differences in adaptive behaviors of adolescent male and female rats exposed at birth to inflammatory pain or stress. J Evol Biochem Phys 51, 305–315 (2015). https://doi.org/10.1134/S0022093015040067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093015040067

Key words

Navigation