Skip to main content
Log in

Temperature Dependence of Circularly Polarized Radiation of an Injection Semiconductor Laser

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The temperature dependence of stimulated laser radiation with a high degree of circular polarization in chiral semiconductor nanostructures has been investigated in the temperature range from liquid-helium temperatures to ~140 K. Investigations have been performed on electrically pumped semiconductor laser structures based on planar microcavities with GaAs quantum wells inside and a periodic square lattice of a chiral-symmetry photonic crystal, formed as a result of partial etching in the upper Bragg mirror. Developed multimode lasing in the form of very narrow spectral bands with a high degree of circular polarization of radiation (>70%) up to temperatures of ~90 K was observed at maximum values of the pulsed current flowing through the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. X. Jiang, R. Wang, R. M. Shelby, R. M. Macfarlane, S. R. Bank, J. S. Harris, and S. S. P. Parkin, Phys. Rev. Lett. 94, 056601 (2005).

  2. Semiconductor Spintronics and Quantum Computation, Ed. by D. D. Awschalom, D. Loss, and N. Samarth (Springer, Heidelberg, 2002).

    Google Scholar 

  3. Spin Physics in Semiconductors, Ed. by M. I. Dyakonov (Springer, Berlin, 2008).

    Google Scholar 

  4. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, Optica 4, 139 (2017).

    Article  ADS  Google Scholar 

  5. H. Hübener, U. de Giovannini, C. Schäfer, J. Andberger, M. Ruggenthaler, J. Faist, and A. Rubio, Nat. Mater. 20, 438 (2021).

    Article  Google Scholar 

  6. H. Ando, T. Sogawa, and H. Gotoh, Appl. Phys. Lett. 73, 566 (1998).

    Article  ADS  Google Scholar 

  7. M. Lindemann, G. Xu, T. Pusch, R. Michalzik, M. R. Hofmann, I. Žutić, and N. C. Gerhardt, Nature (London, U.K.) 568, 212 (2019).

    Article  ADS  Google Scholar 

  8. I. Žutić, G. Xu, M. Lindemann, P. E. Faria, Jr., J. Lee, V. Labinac, K. Stojšić, G. M. Sipahi, M. R. Hofmann, and N. C. Gerhardt, Solid State Commun. 316–317, 113949 (2020).

  9. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, Opt. Lett. 23, 1707 (1998).

    Article  ADS  Google Scholar 

  10. N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, Nat. Mater. 7, 43 (2008).

    Article  Google Scholar 

  11. K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, Opt. Express 16, 7189 (2008).

    Article  Google Scholar 

  12. K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, Phys. Rev. Lett. 106, 057402 (2011).

  13. N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, Science (Washington, DC, U. S.) 340, 724 (2013).

    Article  ADS  Google Scholar 

  14. A. A. Maksimov, I. I. Tartakovskii, E. V. Filatov, S. V. Lobanov, N. A. Gippius, S. G. Tikhodeev, C. Schneider, M. Kamp, S. Maier, S. Höfling, and V. D. Kulakovskii, Phys. Rev. B 89, 045316 (2014).

  15. S. V. Lobanov, S. G. Tikhodeev, N. A. Gippius, A. A. Maksimov, E. V. Filatov, I. I. Tartakovskii, V. D. Kulakovskii, T. Weiss, C. Schneider, J. Geßler, M. Kamp, and S. Höfling, Phys. Rev. B 92, 205309 (2015).

  16. A. A. Maksimov, A. B. Peshcherenko, E. V. Filatov, I. I. Tartakovskii, V. D. Kulakovskii, S. G. Tikhodeev, S. V. Lobanov, C. Schneider, and S. Höfling, JETP Lett. 106, 643 (2017).

    Article  ADS  Google Scholar 

  17. S. V. Lobanov, T. Weiss, N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, K. Konishi, and M. Kuwata-Gonokami, Opt. Lett. 40, 1528 (2015).

    Article  ADS  Google Scholar 

  18. A. A. Demenev, V. D. Kulakovskii, C. Schneider, S. Brodbeck, M. Kamp, S. Hoefling, S. V. Lobanov, T. Weiss, N. A. Gippius, and S. G. Tikhodeev, Appl. Phys. Lett. 109, 171106 (2016).

  19. C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, Nature (London, U.K.) 497, 348 (2013).

    Article  ADS  Google Scholar 

  20. A. A. Maksimov, E. V. Filatov, and I. I. Tartakovskii, Bull. Russ. Acad. Sci.: Phys. 85, 176 (2021).

    Article  Google Scholar 

  21. A. A. Maksimov, E. V. Filatov, I. I. Tartakovskii, V. D. Kulakovskii, S. G. Tikhodeev, C. Schneider, and S. Höfling, Phys. Rev. Appl. 17, L021001 (2022).

  22. M. F. Afromowitz, Solid State Commun. 15, 59 (1974).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.D. Kulakovskii and S.G. Tikhodeev for numerous fruitful discussions, as well as to S. Höffling and C. Schneider for supplying experimental samples.

Funding

This study was supported in part by the Russian Foundation for Basic Research, project no. 20-02-00534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Maksimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimov, A.A., Filatov, E.V. & Tartakovskii, I.I. Temperature Dependence of Circularly Polarized Radiation of an Injection Semiconductor Laser. Jetp Lett. 116, 500–504 (2022). https://doi.org/10.1134/S0021364022601841

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022601841

Navigation