Skip to main content
Log in

Formation of a Light Bullet in an Elliptically Polarized Pulse

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The formation of a single-cycle light bullet during the propagation of a mid-infrared femtosecond laser pulse with an arbitrary initial ellipticity of the light field polarization in lithium fluoride is studied for the first time experimentally and numerically. It is found that the ellipticity of polarization determines the effect of the absolute phase of the carrier frequency on the nonlinear optical interaction of the light bullet with the medium. The transition from the linear to circular polarization is accompanied by the disappearance of modulation of the density of color centers induced in lithium fluoride by the single-cycle light bullet. This occurs because the magnitude of the light field strength in the case of circular polarization always coincides with the maximum of the pulse envelope and the effect of “breathing” of the light bullet in the isotropic medium is fundamentally absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Couairon and A. Myzyrowicz, Phys. Rep. 441, 47 (2007).

    Article  ADS  Google Scholar 

  2. S. L. Chin, Femtosecond Laser Filamentation, Vol. 55 of Springer Series on Atomic, Optical and Plasma Physics (Springer, New York, 2010).

  3. S. V. Chekalin and V. P. Kandidov, Phys. Usp. 56, 123 (2013).

    Article  ADS  Google Scholar 

  4. Y. Silberberg, Opt. Lett. 15, 1282 (1990).

    Article  ADS  Google Scholar 

  5. L. Bergé and S. Skupin, Phys. Rev. Lett. 100, 113902 (2008).

  6. E. O. Smetanina, V. O. Kompanets, A. E. Dormidonov, S. V. Chekalin, and V. P. Kandidov, Laser Phys. Lett. 10, 105401 (2013).

  7. M. Durand, A. Jarnac, A. Houard, Y. Liu, S. Grabielle, N. Forget, A. Durécu, A. Couairon, and A. Mysyrowicz, Phys. Rev. Lett. 110, 115003 (2013).

  8. D. Majus, G. Tamošauskas, I. Gražulevičiūtė, N. Garejev, A. Lotti, A. Couairon, D. Faccio, and A. Dubietis, Phys. Rev. Lett. 112, 193901 (2014).

  9. S. V. Chekalin, V. O. Kompanets, A. E. Dormidonov, and V. P. Kandidov, Phys. Usp. 62, 282 (2019).

    Article  ADS  Google Scholar 

  10. S. V. Chekalin, V. O. Kompanets, A. V. Kuznetsov, A. E. Dormidonov, and V. P. Kandidov, Laser Phys. Lett. 13, 065401 (2016).

  11. S. V. Chekalin, V. O. Kompanets, A. E. Dormidonov, and V. P. Kandidov, Quantum Electron. 48, 372 (2018).

    Article  ADS  Google Scholar 

  12. S. V. Chekalin, A. E. Dormidonov, V. O. Kompanets, E. D. Zaloznaya, and V. P. Kandidov, J. Phys. B: At. Mol. Opt. Phys. 36, A43 (2019).

    Google Scholar 

  13. I. Gražulevičiūtė, G. Tamošauskas, V. Jukna, A. Couairon, D. Faccio, and A. Dubietis, Opt. Express 22, 30613 (2014).

    Article  ADS  Google Scholar 

  14. S. V. Chekalin, V. O. Kompanets, A. E. Dormidonov, and V. P. Kandidov, Quantum Electron. 47, 259 (2017).

    Article  ADS  Google Scholar 

  15. S. Chekalin, A. Dormidonov, V. Kandidov, and V. Kompanets, Opt. Lett. 45, 1511 (2020).

    Article  ADS  Google Scholar 

  16. S. Chekalin, V. Kompanets, A. Dormidonov, and V. Kandidov, Laser Phys. Lett. 17, 085401 (2020).

  17. V. Kompanets, A. Melnikov, and S. Chekalin, Laser Phys. Lett. 18, 015302 (2021).

  18. S. V. Chekalin and V. O. Kompanets, JETP Lett. 113, 677 (2021).

    Article  ADS  Google Scholar 

  19. V. O. Kompanets, A. E. Dormidonov, and S. V. Chekalin, Opt. Lett. 46, 3187 (2021).

    Article  ADS  Google Scholar 

  20. T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).

    Article  ADS  Google Scholar 

  21. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  22. V. A. Makarov, I. A. Perezhogin, and N. N. Potravkin, Opt. Commun. 339, 228 (2015).

    Article  Google Scholar 

  23. E. D. Zaloznaya, A. E. Dormidonov, V. O. Kompanets, S. V. Chekalin, and V. P. Kandidov, JETP Lett. 113, 787 (2021).

    Article  Google Scholar 

  24. S. V. Chekalin and V. O. Kompanets, Opt. Spectrosc. 127, 88 (2019).

    Article  ADS  Google Scholar 

  25. M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004).

  26. V. Yu. Fedorov, M. Chanal, D. Grojo, and S. Tzortzakis, Phys. Rev. Lett. 117, 043902 (2016).

  27. A. V. Kuznetsov, A. E. Dormidonov, V. O. Kompanets, S. V. Chekalin, and V. P. Kandidov, Quantum Electron. 51, 670 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18-12-00422). E.D. Zaloznaya acknowledges the support of the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Dormidonov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dormidonov, A.E., Zaloznaya, E.D., Kandidov, V.P. et al. Formation of a Light Bullet in an Elliptically Polarized Pulse. Jetp Lett. 115, 11–15 (2022). https://doi.org/10.1134/S0021364022010088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022010088

Navigation