Skip to main content
Log in

Microscopic Description of the Thermodynamics of a Lipid Membrane at a Liquid–Gel Phase Transition

  • Biophysics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A microscopic model of the lipid membrane is constructed that provides analytically tractable description of the physical mechanism of the first order liquid–gel phase transition. We demonstrate that liquid–gel phase transition is cooperative effect of the three major interactions: inter-lipid van der Waals attraction, steric repulsion and hydrophobic tension. The model explicitly shows that temperature-dependent inter-lipid steric repulsion switches the system from liquid to gel phase when the temperature decreases. The switching manifests itself in the increase in lateral compressibility of the lipids as the temperature decreases, making phase with smaller area more preferable below the transition temperature. The model gives qualitatively correct picture of abrupt change at transition temperature of the area per lipid, membrane thickness and volume per hydrocarbon group in the lipid chains. The calculated dependence of phase transition temperature on lipid chain length is in quantitative agreement with experimental data. Steric repulsion between the lipid molecules is shown to be the only driver of the phase transition, as van der Waals attraction and hydrophobic tension are weakly temperature dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. de Gennes, Phys. Lett. A 47, 123 (1974).

    Article  ADS  Google Scholar 

  2. S. Marcelja, Biochim. Biophys. Acta 367, 165 (1974).

    Article  Google Scholar 

  3. J. F. Nagle, J. Chem. Phys. 58, 252 (1973).

    Article  ADS  Google Scholar 

  4. H. L. Scott and W. H. Cheng, Biophys. J. 28, 117 (1979).

    Article  ADS  Google Scholar 

  5. A. Caille, A. Rapini, M. J. Zuckermann, A. Cros, and S. Doniach, Can. J. Phys. 56, 348 (1978).

    Article  ADS  Google Scholar 

  6. C. Huang and S. Li, Biochim. Biophys. Acta 1422, 273 (1999).

    Article  Google Scholar 

  7. E. I. Kats, V. V. Lebedev, and A. R. Muratov, Phys. Rep. 228, 1 (1993).

    Article  ADS  Google Scholar 

  8. S. Leekumjorn and A. K. Sum, Biochim. Biophys. Acta 1768, 354 (2007).

    Article  Google Scholar 

  9. J. F. Nagle and S. Tristram-Nagle, Biochim. Biophys. Acta 1469, 159 (2000).

    Article  Google Scholar 

  10. D. Needham and E. Evans, Biochemistry 27, 8261 (1988).

    Article  Google Scholar 

  11. B. S. Lee, S. A. Mabry, A. Jonas, and J. Jonas, Chem. Phys. Lipids 78, 103 (1995).

    Article  Google Scholar 

  12. J. F. Nagle and D. A. Wilkinson, Biophys. J. 23, 159 (1978).

    Article  Google Scholar 

  13. S. J. Marrink, J. Risselada, and A. E. Mark, Chem. Phys. Lipids 135, 223 (2005).

    Article  Google Scholar 

  14. S. W. Chiu, E. Jakobsson, J. Mashl, and L. Scott, Biophys. J. 83, 1842 (2002).

    Article  ADS  Google Scholar 

  15. D. A. Brown and E. London, J. Biolog. Chem. 275, 17221 (2000).

    Article  Google Scholar 

  16. F. M. Goni, Biochim. Biophys. Acta 1838, 1467 (2014).

    Article  Google Scholar 

  17. V. S. Markin and B. Martinac, Biophys. J. 60, 1120 (1991).

    Article  ADS  Google Scholar 

  18. S. Sukharev, S. R. Durell, and H. R. Guy, Biophys. J. 81, 917 (2001).

    Article  Google Scholar 

  19. K. Simons and E. Ikonen, Nature (London, U.K.) 387 (6633), 569 (1997).

    Article  ADS  Google Scholar 

  20. J. N. Israelachvili, Intermolecular and Surface Forces, 3rd ed. (Academic, Burlington, MA, 2011), p. 537.

    Google Scholar 

  21. D. Boal, Mechanics of the Cell, 2nd ed. (Cambridge Univ. Press, Cambridge, UK, New York, 2012), p. 259.

    Book  Google Scholar 

  22. S. I. Mukhin and S. Baoukina, Phys. Rev. E 71, 061918 (2005).

    Article  ADS  Google Scholar 

  23. S. I. Mukhin and B. B. Kheyfets, Phys. Rev. E 82, 051901 (2010).

    Article  ADS  Google Scholar 

  24. T. W. Burkhardt, J. Phys. A: Math. Gen. 28, L629 (1995).

    Article  ADS  Google Scholar 

  25. I. Szleifer, D. Kramer, A. Ben-Shaul, D. Roux, and W. M. Gelbart, Phys. Rev. Lett. 60, 1966 (1988).

    Article  ADS  Google Scholar 

  26. I. Szleifer, D. Kramer, A. Ben-Shaul, W. M. Gelbart, and S. A. Safran, J. Chem. Phys. 92, 6800 (1990).

    Article  ADS  Google Scholar 

  27. E. Lindahl and O. Edholm, Biophys. J. 79, 426 (2000).

    Article  ADS  Google Scholar 

  28. L. S. Vermeer, B. L. de Groot, V. Reat, A. Milon, and J. Czaplicki, Eur. Biophys. J. 36, 919 (2007).

    Article  Google Scholar 

  29. B. Kheyfets, T. Galimzyanov, A. Drozdova, and S. Mukhin, Phys. Rev. E 94, 042415 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  30. B. Kheyfets, T. Galimzyanov, and S. Mukhin, arXiv: 1804.03709 (2018).

  31. L. Salem, J. Chem. Phys. 37, 2100 (1962).

    Article  ADS  Google Scholar 

  32. S. I. Mukhin and B. B. Kheyfets, JETP Lett. 99, 358 (2014).

    Article  ADS  Google Scholar 

  33. Z. V. Leonenko, E. Finot, H. Ma, T. E. S. Dahms, and D. T. Cramb, Biophys. J. 86, 3783 (2004).

    Article  Google Scholar 

  34. M. R. Morrow, J. P. Whitehead, and D. Lu, Biophys. J. 63, 18 (1992).

    Article  ADS  Google Scholar 

  35. V. K. Sharma, E. Mamontov, D. B. Anunciado, H. O’Neill, and V. Urban, J. Phys. Chem. B 119, 4460 (2015).

    Article  Google Scholar 

  36. D. Marsh, Biochim. Biophys. Acta 1286, 183 (1996).

    Article  Google Scholar 

  37. R. N. Lewis, N. Mak, and R. N. McElhaney, Biochemistry 26, 6118 (1987).

    Article  Google Scholar 

  38. T. G. Burke, A. S. Rudolph, R. R. Price, J. P. Sheridan, A. W. Dalziel, A. Singh, and P. E. Schoen, Chem. Phys. Lipids 48, 215 (1988).

    Article  Google Scholar 

  39. G. Lipka, B. Z. Chowdhry, and J. M. Sturtevant, J. Phys. Chem. 88, 5401 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kheyfets.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheyfets, B., Galimzyanov, T. & Mukhin, S. Microscopic Description of the Thermodynamics of a Lipid Membrane at a Liquid–Gel Phase Transition. Jetp Lett. 107, 718–724 (2018). https://doi.org/10.1134/S0021364018110036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018110036

Navigation