Skip to main content
Log in

Selective spectroscopy of tunneling transitions between the Landau levels in vertical double-gate graphene–boron nitride–graphene heterostructures

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Resonance magnetic tunneling in heterostructures formed by graphene single sheets separated by a hexagonal boron nitride barrier and two gates has been investigated. The design has allowed studying transitions between individual Landau levels of different graphene sheets bounded by a narrow conductivity window with a width controlled by a bias voltage. Three-dimensional plots of the equilibrium tunneling conductivity against both gate voltages reflecting the displacement of resonances between various combinations of the individual Landau levels in the top and bottom sheets have been drawn and identified. The discovered step structure of the current patterns with plateaus and abrupt jumps between them is caused by pinning of chemical potentials to the Landau levels in two graphene sheets. The presence of negative differential conductivity regions in the current–voltage characteristics in the magnetic field with the peak-to-valley current ratio I p/I v ~ 2 indicates a high degree of the conservation of an in-plane momentum component at tunneling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Britnell, R. V. Gorbachev, A. K. Geim, L. A. Ponomarenko, A. Mishchenko, M. T. Greenaway, T. M. Fromhold, K. S. Novoselov, and L. Eaves, Nat. Commun. 4, 1794 (2013).

    Article  ADS  Google Scholar 

  2. A. Mishchenko, J. S. Tu, Y. Cao, et al. (Collab.), Nat. Nanotechnol. 9, 808 (2014).

    Article  ADS  Google Scholar 

  3. B. Fallahazad, K. Lee, S. Kang, J. Xue, S. Larentis, C.Corbet, K. Kim, H. C. P. Movva, T. Taniguchi, K. Watanabe, L. F. Register, S. K. Banerjee, and E. Tutuc, Nano Lett. 15, 428 (2015).

    Article  ADS  Google Scholar 

  4. K. Kim, M. Yankowitz, B. Fallahazad, S. Kang, H. C. P. Movva, S. Huang, S. Larentis, C. M. Corbet, T. Taniguchi, K. Watanabe, S. K. Banerjee, B. J. LeRoy, and E. Tutuc, Nano Lett. 16, 1989 (2016).

    Article  ADS  Google Scholar 

  5. E. E. Vdovin, A. Mishchenko, M. T. Greenaway, M. J. Zhu, D. Ghazaryan, A. Misra, Y. Cao, S. V. Morozov, O. Makarovsky, T. M. Fromhold, A. Patanè, G. J. Slotman, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, and L. Eaves, Phys. Rev. Lett. 116, 186603 (2016).

    Article  ADS  Google Scholar 

  6. R. M. Feenstra, D. Jena, and G. Gu, J. Appl. Phys. 111, 043711 (2012).

    Article  ADS  Google Scholar 

  7. F. T. Vasko, Phys. Rev. B 87, 075424 (2013).

    Article  ADS  Google Scholar 

  8. S. C. de la Barrera, Q. Gao, and R. M. Feenstra, J. Vacuum Sci. Technol. B 32, 04E101 (2014).

    Article  Google Scholar 

  9. L. Brey, Phys. Rev. Appl. 2, 014003 (2014).

    Article  ADS  Google Scholar 

  10. S. C. de la Barrera and R. M. Feenstra, Appl. Phys. Lett. 106, 093115 (2015).

    Article  ADS  Google Scholar 

  11. T. L. M. Lane, J. R. Wallbank, and V. I. Fal’ko, Appl. Phys. Lett. 107, 203506 (2015).

    Article  ADS  Google Scholar 

  12. K. A. Guerrero-Becerra, A. Tomadin, and M. Polini, Phys. Rev. B 93, 125417 (2016).

    Article  ADS  Google Scholar 

  13. B. Amorim, R. M. Ribeiroand, and N. M. R. Peres, Phys. Rev. B 93, 235403 (2016).

    Article  ADS  Google Scholar 

  14. F. Amet, J. R. Williams, A. G. F. Garcia, M. Yankowitz, K. Watanabe, T. Taniguchi, and D. Goldhaber-Gordon, Phys. Rev. B 85, 073405 (2012).

    Article  ADS  Google Scholar 

  15. S. Jung, M. Park, J. Park, T.-Y. Jeong, H.-J. Kim, K. Watanabe, T. Taniguchi, D. Han Ha, C. Hwang, and Y.-S. Kim, Sci. Rep. 5, 16642 (2015).

    Article  ADS  Google Scholar 

  16. M. T. Greenaway, E. E. Vdovin, A. Mishchenko, O. Makarovsky, A. Patanè, J. R. Wallbank, Y. Cao, A. V. Kretinin, M. J. Zhu, S. V. Morozov, V. I. Fal’ko, K. S. Novoselov, A. K. Geim, T. M. Fromhold, and L. Eaves, Nat. Phys. 11, 1057 (2015).

    Article  Google Scholar 

  17. J. P. Eisenshtein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 69, 3804 (1992).

    Article  ADS  Google Scholar 

  18. N. Turner, J. T. Nicholls, E. H. Linfield, K. M. Brown, G. A. Jones, and D. A. Ritchie, Phys. Rev. B 54, 10614 (1996).

    Article  ADS  Google Scholar 

  19. A. Luican, G. Li, and E. Y. Andrei, Phys. Rev. B 83, 041405 (2011).

    Article  ADS  Google Scholar 

  20. J. Gaskell, L. Eaves, K. S. Novoselov, A. Mishchenko, A. Geim, T. M. Fromhold, and M. T. Greenaway, Appl. Phys. Lett. 107, 103105 (2015).

    Article  ADS  Google Scholar 

  21. E. R. Brown, C. D. Parker, and T. C. L. G. Sollner, Appl. Phys. Lett. 54, 934 (1989).

    Article  ADS  Google Scholar 

  22. L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, Phys. Rev. Lett. 105, 136801 (2010).

    Article  ADS  Google Scholar 

  23. O. Dial, R. Ashoori, L. Pfeiffer, and K. West, Nature 448, 176 (2007).

    Article  ADS  Google Scholar 

  24. J. R. Wallbank, Electronic Properties of Graphene Heterostructures with Hexagonal Crystals (Springer International, Switzerland, 2014), p. 84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Vdovin.

Additional information

Original Russian Text © Yu.N. Khanin, E.E. Vdovin, A. Mishchenko, J.S. Tu, A. Kozikov, R.V. Gorbachev, K.S. Novoselov, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 5, pp. 342–348.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanin, Y.N., Vdovin, E.E., Mishchenko, A. et al. Selective spectroscopy of tunneling transitions between the Landau levels in vertical double-gate graphene–boron nitride–graphene heterostructures. Jetp Lett. 104, 334–340 (2016). https://doi.org/10.1134/S0021364016170094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016170094

Navigation