Skip to main content
Log in

Features of Operation of Transistor Switches in a Half-Bridge Circuit for the Formation of Steep High-Voltage Rectangular Pulses

  • ELECTRONICS AND RADIO ENGINEERING
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

A driver has been developed to control a solid-state high-voltage switch for a half-bridge switching circuit, which is used as part of high-voltage pulse generators. The developed driver makes it possible to significantly reduce the negative influence of capacitive couplings, such as the Miller capacitance and parasitic capacitances of the high-voltage switch to the ground. Minimizing the influence of these factors made it possible to provide the characteristic times of the leading edges of voltage pulses, which are created by the generator, equal to several tens of nanoseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Benard, N. and Moreau, E., Appl. Phys. Lett., 2012, vol. 100, no. 19, p. 193503. https://doi.org/10.1063/1.4712125

    Article  ADS  Google Scholar 

  2. Starikovskii, A.Y., Nikipelov, A.A., Nudnova, M.M., and Roupassov, D.V., Plasma Sources Sci. Technol., 2009, vol. 18, no. 3, p. 034015. https://doi.org/10.1088/0963-0252/18/3/034015

    Article  ADS  Google Scholar 

  3. Shintaro Sato, Masayuki Takahashi, and Naofumi Ohnishi, Appl. Phys. Lett., 2017, vol. 110, p. 194101. https://doi.org/10.1063/1.4983370

    Article  ADS  Google Scholar 

  4. Corke, T.C., Enloe, C.L., and Wilkinson, S.P., Annu. Rev. Fluid Mech., 2010, vol. 42, no. 1, p. 505. https://doi.org/10.1146/ANNUREV-FLUID-121108-145550

    Article  ADS  Google Scholar 

  5. Ding, Z.W., Li, Y.W., Pang, L., Zhuang, Z., Ma, W., and Zhang, B.L., Plasma Phys. Rep., 2019, vol. 45, no. 5, p. 492. https://doi.org/10.1134/S1063780X19050040

    Article  ADS  Google Scholar 

  6. Rebrov, I.E. and Khomich, V.Yu., Prikl. Fiz., 2020, no. 1, p. 5.

  7. Filatov, I.E., Uvarin, V.V., and Kuznetsov, D.L., Tech. Phys., 2018, vol. 63, no. 5, p. 680. https://doi.org/10.1134/S1063784218050079

    Article  Google Scholar 

  8. Sun, Y., Montenegro, A., and Tobin, T., IEEE Trans. Dielectr. Electr. Insul., 2020, vol. 27, no. 1, p. 206. https://doi.org/10.1109/TDEI.2019.008386

    Article  Google Scholar 

  9. Rebrov, I.E., Kashin, A.V., Lukanina, K.I., Antipova, K.G., Khomich, V.Yu., and Grigor’ev, T.E., Prikl. Fiz., 2019, no. 3, p. 98.

  10. Rebrov, I.E., Lukanina, K.I., Grigoriev, T.E., Bakirov, A.V., Krasheninnikov, S.V., Dmitryakov, P.V., Kamyshinsky, R.A., Antipova, C.G., Chvalun, S.N., and Khomich, V.Yu., Chem. Eng. J., 2021, vol. 418, p. 126561. https://doi.org/10.1016/j.cej.2020.126561

    Article  Google Scholar 

  11. Soldatov, A.N., Sukhanov, V.B., Fedorov, V.F., and Yudin, N.A., Atmos. Oceanic Opt., 1995, vol. 8, p. 894.

    Google Scholar 

  12. Reberšek, M. and Miklavčič, D., Automatika, 2011, vol. 52, no. 1, p. 12. https://doi.org/10.1080/00051144.2011.11828399

    Article  Google Scholar 

  13. Malashin, M.V., Moshkunov, S.I., Khomich, V.Yu., and Shershunova, E.A., Instrum. Exp. Tech., 2016, vol. 59, no. 2, p. 226. https://doi.org/10.1134/S0020441216020093

    Article  Google Scholar 

  14. Moshkunov, S.I., Rebrov, I.E., and Khomich, V.Yu., Usp. Prikl. Fiz., 2013, vol. 1, no. 5, p. 630.

    Google Scholar 

  15. Malashin, M.V., Moshkunov, S.I., Rebrov, I.E., Khomich, V.Yu., and Shershunova, E.A., Instrum. Exp. Tech., 2014, vol. 57, no. 2, p. 140. https://doi.org/10.1134/S0020441214010242

    Article  Google Scholar 

  16. Kazantsev, V.I., Platonov, S.A., and Sergeev, V.G., Inzh. J.: Nauka Innovatsii, 2012, no. 8 (8), p. 60.

  17. Bakun, I., Čobanov, N., and Jakopović, Ž., Automatika, 2011, vol. 52, no. 4, p. 295. https://doi.org/10.7305/automatika.52-4.104

    Article  Google Scholar 

  18. Guo, C., Cai, W., Li, J., Wang, S., Wei, L., and Li, Y., J. Phys.: Conf. Ser., 2019, vol. 1237, no. 4, p. 042076. https://doi.org/10.1088/1742-6596/1237/4/042076

    Article  Google Scholar 

  19. http://www.irf.com/product-info/datasheets/data/irgps40b120ud.pdf.

  20. Storasta, L., Matthias, S., Kopta, A., and Rahimo, M., Proc. 24th Int. Symposium on Power Semiconductor Devices and ICs, IEEE, 2012, p. 157. https://doi.org/10.1109/ispsd.2012.6229047

  21. Scofield, J., Merrett, J.N., Richmond, J., Agarwal, A., and Leslie, S., Additional Conf. (Device Packag., HiTEC, HiTEN, and CICMT), 2010, vol. 2010, no. HITEC, p. 000289. https://doi.org/10.4071/HITEC-JScofield-WP22

  22. Moshkunov, S.I., Rebrov, I.E., Khomich, V.Yu., and Shershunova, E.A., Instrum. Exp. Tech., 2018, vol. 61, no. 6, p. 821. https://doi.org/10.1134/S0020441218050214

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-29-17066 mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Rebrov.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zharkov, Y.E., Rebrov, I.E., Khomich, V.Y. et al. Features of Operation of Transistor Switches in a Half-Bridge Circuit for the Formation of Steep High-Voltage Rectangular Pulses. Instrum Exp Tech 64, 805–811 (2021). https://doi.org/10.1134/S0020441221060191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221060191

Navigation