Skip to main content
Log in

A Different Method to Determine the Gamma-ray Linear Attenuation Coefficient

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Gamma-ray linear attenuation coefficient values of Pb, Fe, and Al absorber materials were investigated. A fast coincidence timing measurement spectrometer was used for this purpose differently from other traditional spectrometers. A solid point 22Na positron source was utilized for the annihilation radiations. Obtained results were compared with those of XCOM program and literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abbasova, N., Yüksel, Z., Abbasov, E., Gulbicim, H., and Tufan, M.C., Results Phys., 2019, vol. 12, p. 2202. https://doi.org/10.1016/j.rinp.2019.02.068

    Article  ADS  Google Scholar 

  2. Saeed, A., El-shazly, R.M., Elbashar, Y.H., Abou El-azm, A.M., El-Okr, M.M., Comsan, M.N.H., Osman, A.M., Abdal-monem, A.M., and El-sersy, A.R., Radiat. Phys. Chem., 2014, vol. 102, p. 167. https://doi.org/10.1016/j.radphyschem.2014.04.032

    Article  ADS  Google Scholar 

  3. Waly Al-Sayed, A., Fusco, M.A., and Bourham, M.A., Ann. Nucl. Energy, 2016, vol. 96, p. 26. https://doi.org/10.1016/j.anucene.2016.05.028

    Article  Google Scholar 

  4. Al-Hadeethi, Y., Sayyed, M.I., and Tijani, S.A., Nucl. Eng. Technol., 2019, vol. 51, p. 2005. https://doi.org/10.1016/j.net.2019.06.014

    Article  Google Scholar 

  5. Shams, T., Eftekhar, M., and Shirani, A., Constr. Build. Mater., 2018, vol. 182, p. 35. https://doi.org/10.1016/j.conbuildmat.2018.06.032

    Article  Google Scholar 

  6. Chaudhari, L.M. and Teli, M.T., Appl. Radiat. Isot., 1996, vol. 47, p. 365. https://doi.org/10.1016/0969-8043(95)00305-3

    Article  Google Scholar 

  7. Tsoulfanidis, N., Measurement and Detection of Radiation, New York: Taylor, 1995.

    Google Scholar 

  8. Celiktas, C., Ann. Nucl. Energy, 2011, vol. 38, p. 2096. https://doi.org/10.1016/j.anucene.2011.05.015

    Article  Google Scholar 

  9. Bedwell, M.O. and Paulus, T.J., IEEE Trans. Nucl. Sci., 1979, vol. NS-26, no. 1, p. 442. https://doi.org/10.1109/TNS.1976.4328245

    Article  ADS  Google Scholar 

  10. Leo, R.W., Techniques for Nuclear and Particle Physics Experiments, Berlin, Heidelberg: Springer, 1987.

    Book  Google Scholar 

  11. Knoll, G.F., Radiation Detection and Measurement, New York: Wiley, 2000.

    Google Scholar 

  12. National Institute of Standards and Technology (NIST). https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html.

  13. Grodstein, G.W., X-Ray Attenuation Coefficients from 10 keV to 100 MeV, National Bureau of Standards Circular 583, AD-A278 139, Washington, DC: National Bureau of Standards, 1957.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by TUBITAK, the Scientific and Technological Research Council of TURKEY under project number 116F324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Ebru Ermis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermis, E.E., Celiktas, C. A Different Method to Determine the Gamma-ray Linear Attenuation Coefficient. Instrum Exp Tech 64, 318–320 (2021). https://doi.org/10.1134/S0020441221010097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221010097

Navigation