Skip to main content
Log in

A Comparative Analysis of Catalysts for the Preparation of Germanium through Hydrogen Reduction of Germanium Tetrachloride

  • Published:
Inorganic Materials Aims and scope

Abstract

We have synthesized catalysts for the hydrogen reduction of germanium tetrachloride: a catalyst based on multiwalled carbon nanotubes and a hybrid catalyst based on multiwalled carbon nanotubes whose surface was decorated with copper-containing nanoparticles. The hybrid catalyst has been characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results demonstrate that it consists of multiwalled carbon nanotubes whose surface is decorated with copper nanoparticles in a cuprous oxide shell (Cu2O/Cu/MWCNTs). The catalytic activity of the hybrid catalyst exceeds that of the as-prepared MWCNTs. The use of the Cu2O/Cu/MWCNT hybrid catalyst as a catalyst for the hydrogen reduction of germanium tetrachloride allows the reaction temperature to be lowered and ensures 95.7% germanium tetrachloride conversion at 873 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Devyatykh, G.G., Gusev, A.V., and Vorotyntsev, V.M., Preparation of high–purity germanium, Vysokochist. Veshchestva, 1988, no. 1, pp. 5–16.

    Google Scholar 

  2. Ohtera, Y., Miura, K., and Kawashima, T., Ge/SiO2 photonic crystal multichannel wavelength filters for short wave infrared wavelengths, Jpn. J. Appl. Phys. Part 1, 2007, vol. 46, no. 4A, pp. 1511–1515.

    Google Scholar 

  3. Kuo, Y.–H., Huang, Y.–A., and Chen, T.L., A vertical germanium thermooptic modulator for optical interconnects, IEEE Photonics Technol. Lett., 2009, vol. 21, no. 4, pp. 245–247.

    Article  CAS  Google Scholar 

  4. Chan, C.K., Zhang, X.F., and Cui, Y., High capacity Li ion battery anodes using Ge nanowires, Nano Lett., 2008, vol. 8, no. 1, pp. 307–309.

    Article  CAS  PubMed  Google Scholar 

  5. Canovas, E., Fuertes Marron, D., Marti, A., Lique, A., Bett, A.W., Dimroth, F., and Philipps, S.P., Photoreflectance analysis of a GaInP/GaInAs/Ge multijunction solar cell, Appl. Phys. Lett., 2010, vol. 97, no. 20, paper 203 504.

    Google Scholar 

  6. Miguez, H., Chomski, E., Garcia–Santamaria, F., Ibisate, M., John, S., Lopez, C., Meseguer, F., Mondia, J.P., Ozin, G.A., Toader, O., and van Driel, H.M., Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition, Adv. Mater., 2001, vol. 13, no. 21, pp. 1634–1637.

    Article  CAS  Google Scholar 

  7. Halbwax, M., Bouchier, D., Yam, V., Debarre, D., Nguyen, L.H., Zheng, Y., Rosner, P., Benamara, M., Strunk, H.P., and Clerc, C., Kinetics of Ge growth at low temperature on Si(001) by ultrahigh vacuum chemical vapor deposition, J. Appl. Phys., 2005, vol. 97, no. 6, paper 064 907.

  8. Fedala, A., Simon, C., Coulon, N., Mohammed–Brahim, T., Abdeslam, M., and Chami, A–C., Low temperature deposition of micro–crystalline silicon germanium Si1–xGex by RF–PECVD, Phys. Status Solidi C, 2010, vol. 7, nos. 3–4, pp. 762–765.

    CAS  Google Scholar 

  9. Restrepo, D.T., Lynch, K.E., Giesler, K., Kuebler, S.M., and Blair, R.G., Low–temperature (210°C) deposition of crystalline germanium via in situ disproportionation of GeI2, Mater. Res. Bull., 2012, vol. 47, no. 11, pp. 3484–3488.

    Article  CAS  Google Scholar 

  10. Sviridova, M.N., Tanutrov, I.N., and Bazhov, P.S., RF Patent 2 375 481, 2009.

    Google Scholar 

  11. Chirkst, D.E., Cheremisina, O.V., Chistyakov, A.A., and Zhadovskii, I.T., RF Patent 2 326 951, 2008.

    Google Scholar 

  12. Song, H.J., Yoon, S.M., Shin, H.–J., Lim, H., Park, C., and Choi, H.C., Growth of germanium nanowires using liquid GeCl4 as a precursor: the critical role of Si impurities, Chem. Commun., 2009, no. 34, pp. 5124–5126.

    Article  CAS  Google Scholar 

  13. Vorotyntsev, A.V., Vorotyntsev, V.M., Petukhov, A.N., Kadomtseva, A.V., Kopersak, I.Yu., Trubyanov, M.M., Ob”edkov, A.M., Pikulin, I.V., Drozhzhin, V.S., and Aushev, A.A., Kinetics of germanium tetrachloride reduction with hydrogen in the presence of pyrolytic tungsten, Inorg. Mater., 2016, vol. 52, no. 9, pp. 919–924.

    Article  CAS  Google Scholar 

  14. Kadomtseva, A.V., Ob”edkov, A.M., Semenov, N.M., Kaverin, B.S., and Gusev, S.A., Synthesis of catalyst based on sol microspheres coated with pyrolytic tungsten and study of its influence on production of metallic germanium, Russ. J. Appl. Chem., 2016, vol. 89, no. 11, pp. 1797–1805.

    Article  CAS  Google Scholar 

  15. Kadomtseva, A.V., Vorotyntsev, A.V., Vorotyntsev, V.M., Petukhov, A.N., Ob”edkov, A.M., Kremlev, K.V., and Kaverin, B.S., Effect of the catalytic system based on multi–walled carbon nanotubes modified with copper nanoparticles on the kinetics of catalytic reduction of germanium tetrachloride by hydrogen, Russ. J. Appl. Chem. 2015, vol. 88, no. 4, pp. 595–602.

    Google Scholar 

  16. Ob”edkov, A.M., Kaverin, B.S., Egorov, V.A., Semenov, N.M., Ketkov, S.Yu., Domrachev, G.A., Kremlev, K.V., Gusev, S.A., Perevezentsev, V.N., Moskvichev, A.N., Moskvichev, A.A., and Rodionov, A.S., Macrocylinders based on radially oriented multiwalled carbon nanotubes, Pis’ma Mater., 2012, vol. 2, pp. 152–156.

    Google Scholar 

  17. Kadomtseva, A.V. and Ob”edkov, A.M., Reduction of GeCl4 in the presence of a catalyst based on modified NiCl2, Inorg. Mater., 2017, vol. 53, no. 12, pp. 1312–1318.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kadomtseva.

Additional information

Original Russian Text © A.V. Kadomtseva, A.M. Ob”edkov, N.M. Semenov, B.S. Kaverin, K.V. Kremlev, S.A. Gusev, P.A. Yunin, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 10, pp. 1027–1032.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadomtseva, A.V., Ob”edkov, A.M., Semenov, N.M. et al. A Comparative Analysis of Catalysts for the Preparation of Germanium through Hydrogen Reduction of Germanium Tetrachloride. Inorg Mater 54, 971–976 (2018). https://doi.org/10.1134/S0020168518100084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518100084

Keywords

Navigation