Skip to main content
Log in

Modeling Iron Pentacarbonyl Vaporization Accompanied by Vapor Condensation on a Flowing Down Liquid Film

  • Published:
Inorganic Materials Aims and scope

Abstract

Using iron pentacarbonyl distillation as an example, we analyze the vaporization process in a closed vaporization–condensation system where vapor condenses on a flowing down liquid film. We jointly analyze the mechanisms behind vaporization, vapor transport, condensation, and flowing of the condensate on the inner surface of a vertical tube. We calculate the thickness of the flowing down liquid film, determine the vaporization coefficient for a closed system using experimentally determined temperature dependences of the vaporization rate and saturated vapor pressure, and present the vaporization rate as a function of the vaporization and condensation temperatures, the radius and height of the condensation tube, and the vaporization area of the still residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maruyama, T. and Shinyashiki, Y., Iron–iron oxide composite thin films prepared by chemical vapor deposition from iron pentacarbonyl, Thin Solid Films, 1998, vol. 333, nos. 1–2, pp. 203–206.

    Article  CAS  Google Scholar 

  2. Van Worterghem, J., Mørup, S., Charles, S.W., et al., Formation and chemical stability of metallic glass particles prepared by thermolysis of Fe(CO)5, Hyperfine Interact., 1986, vol. 27, no. 1, pp. 333–336.

    Article  Google Scholar 

  3. Comprehensive Organometallic Chemistry, Wilkinson, G., Eds., Amsterdam: Elsevier, 1982.

  4. Wiesli, R.A., Beard, B.L., Braterman, P.S., et al., Iron isotope fractionation between liquid and vapor phases of iron pentacarbonyl, Talanta, 2007, vol. 71, no. 1, pp. 90–96.

    Article  CAS  PubMed  Google Scholar 

  5. Kuznetsov, V.I., Metalloorganicheskie soedineniya v razdelenii stabil’nykh izotopov (Metalorganic Compounds in the Separation of Stable Isotopes), Moscow: Al’fa-Labl, 2001.

    Google Scholar 

  6. Volkov, V.L., Syrkin, V.G., and Tolmasskii, I.S., Karbonil’noe zhelezo (Carbonyl Iron), Moscow: Metallurgiya, 1969.

    Google Scholar 

  7. Knacke, J. and Stransky, I.N., Evaporation mechanism, Prog. Met. Phys., 1956, vol. 5, no. 6, pp. 181–235.

    Article  Google Scholar 

  8. Kirillov, Yu.P., Shaposhnikov, V.A., Kuznetsov, L.A., Shiryaev, V.S., and Churbanov, M.F., Modeling of the evaporation of liquids and condensation of their vapor during distillation, Inorg. Mater., 2016, vol. 52, no. 11, pp. 1183–1188.

    Article  CAS  Google Scholar 

  9. Kirillov, Yu.P., Shaposhnikov, V.A., and Churbanov, M.F., Modeling the ultrapurification of substances by simple distillation, Inorg. Mater., 2017, vol. 53, no. 8, pp. 867–873.

    Article  Google Scholar 

  10. Belozerov, Yu.S., Bulanov, A.D., Potapov, A.M., Sozin, A.Yu., Steshin, M.O., and Chernova, O.Yu., Ultrapurification of iron pentacarbonyl by distillation techniques, Inorg. Mater., 2017, no. 10, pp. 1103–1108.

    Article  Google Scholar 

  11. Dil’man, V.V., Lotkhov, V.A., Kulov, N.N., and Naidenov, V.I., Evaporation dynamics, Theor. Found. Chem. Eng., 2000, vol. 34, no. 3, pp. 201–210.

    Article  Google Scholar 

  12. Kaminskii, V.A. and Obvintseva, N.Yu., Evaporation of a liquid under the conditions of convective instability in the gas phase, Russ. J. Phys. Chem. A, 2008, vol. 82, no. 7, pp. 1215–1220.

    Article  CAS  Google Scholar 

  13. Borodacheva, Yu.V., Lotkhov, V.A., Dil’man, V.V., and Kulov, N.N., Kinetics of the steady-state evaporation of single-component liquids into an inert gas, Theor. Found. Chem. Eng., 2011, vol. 45, no. 6, pp. 805–810.

    Article  CAS  Google Scholar 

  14. Dil’man, V.V. and Lotkhov, V.A., Molecular turbulent evaporation in a gravitational field, Theor. Found. Chem. Eng., 2015, vol. 49, no. 1, pp. 102–106.

    Article  CAS  Google Scholar 

  15. Siow, E., Ormiston, S., and Soliman, H., Fully coupled solution of a two-phase model for laminar film condensation of vapor-gas mixtures in horizontal channels, Int. J. Heat Mass Transfer, 2002, vol. 45, no. 18, pp. 3689–3702.

    Article  CAS  Google Scholar 

  16. Lee, K.-Y. and Kim, M.H., Experimental and empirical study of steam condensation heat transfer with a noncondensable gas in a small-diameter vertical tube, Nucl. Eng. Des., 2008, vol. 238, no. 1, pp. 207–216.

    Article  CAS  Google Scholar 

  17. Hammami, Y.El., Feddaoui, M., Mediouni, T., and Mir, A., Numerical study of condensing a small condensation of vapour inside a vertical tube, Heat Mass Transfer, 2012, vol. 48, no. 9, pp. 1675–1685.

    Article  CAS  Google Scholar 

  18. Adil Charef, M’barek Feddaoui, Monssif Najim, and Hicham Meftah, Liquid film condensation from water vapour flowing downward along a vertical tube, Desalination, 2017, vol. 409, pp. 21–23.

  19. Sivukhin, D.V., Obshchii kurs fiziki (General Course in Physics), vol. 1: Mekhanika (Mechanics), Moscow: Fizmatlit, 2010.

    Google Scholar 

  20. Powell, M.J.D., A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations, London: H.M. Stationary Office, 1968.

    Google Scholar 

  21. Fletcher, C.A.J., Computational Techniques for Fluid Dynamics, New York: Springer, 1988.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Kirillov.

Additional information

Original Russian Text © V.A. Shaposhnikov, Yu.S. Belozerov, Yu.P. Kirillov, A.D. Bulanov, M.F. Churbanov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 9, pp. 929–935.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaposhnikov, V.A., Belozerov, Y.S., Kirillov, Y.P. et al. Modeling Iron Pentacarbonyl Vaporization Accompanied by Vapor Condensation on a Flowing Down Liquid Film. Inorg Mater 54, 878–884 (2018). https://doi.org/10.1134/S0020168518090157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518090157

Keywords

Navigation