Skip to main content
Log in

Phase states of Li/W/Mn/SiO2 composites in catalytic oxidative coupling of methane

  • Published:
Inorganic Materials Aims and scope

Abstract

Phase diagrams of the Li2O-WO3-MnO-Mn2O3 and Li2O-WO3-Mn2O3-SiO2 systems have been mapped out and Li/W/Mn/SiO2 composite catalysts have been shown to be in melt-Mn2O3-quartz (cristobalite) equilibrium at temperatures of oxidative coupling of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palermo, A., Varquez, J.P.H., and Lambert, R.M., New efficient catalyst for the oxidative coupling of methane, Catal. Lett., 2000, vol. 68, nos. 3–4, pp. 191–196.

    Article  CAS  Google Scholar 

  2. Ji, S., Xiao, T., Li, S., Chou, L., Zhang, B., Xu, C., Hou, R., York, A.P.E., and Green, M.L.H., Surface WO4 tetrahedron: the essence of the oxidative coupling of methane over M-W-Mn/SiO2 catalysts, J. Catal., 2003, vol. 220, no. 1, pp. 47–56.

    Article  CAS  Google Scholar 

  3. Dedov, A.G., Nipan, G.D., Loktev, A.S., Tyunyaev, A.A., Ketsko, V.A., Parkhomenko, K.V., and Moiseev, I.I., Oxidative coupling of methane: influence of the phase composition of silica-based catalysts, Appl. Catal., A: General, 2011, vol. 406, nos. 1–2, pp. 1–12.

    Article  CAS  Google Scholar 

  4. Fenner, C.N., Stability relations of silica minerals, Am. J. Sci. (Ser. 4), 1913, vol. 36, no. 214, pp. 331–384.

    Article  CAS  Google Scholar 

  5. Sinel’nikov, N.N., Role of solid phase in quartz conversion to tridymite, Zh. Neorg. Khim., 1959, vol. 4, no. 12, pp. 2724–2731.

    Google Scholar 

  6. Holmquist, S.B., Conversion of quartz to tridymite, J. Am. Ceram. Soc., 1961, vol. 44, no. 2, pp. 82–86.

    Article  Google Scholar 

  7. Palermo, A., Varquez, J.P.H., Lee, A.F., Tikhov, M.S., and Lambert, R.M., Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane, J. Catal., 1998, vol. 177, no. 2, pp. 259–266.

    Article  CAS  Google Scholar 

  8. Tyunyaev, A.A., Nipan, G.D., Kol’tsova, T.N., Loktev, A.S., Ketsko, V.A., Dedov, A.G., and Moiseev, I.I., Polymorphic Mn/W/Na(K,Rb,Cs)/SiO2 catalysts for oxidative coupling of methane, Russ. J. Inorg. Chem., 2009, vol. 54, no. 5, pp. 664–667.

    Article  Google Scholar 

  9. Gholipour, Z., Malekzadeh, A., Ghiasi, M., Mortazavi, Y., and Khodadadi, A., Structural flexibility under oxidative coupling of methane: main chemical role of alkali ion in [Mn + (Li, Na, K or Cs) + W]/SiO2 catalysts, Iran. J. Sci. Technol., 2012, vol. A2, pp. 189–211.

    Google Scholar 

  10. Malekzadeh, A., Khodadadi, A., Dalai, A.K., and Abedini, M., Oxidative coupling of methane over lithium doped (Mn + W)/SiO2 catalysts, J. Nat. Gas Chem., 2007, vol. 16, no. 2, pp. 121–129.

    Article  CAS  Google Scholar 

  11. Nipan, G.D., Loktev, A.S., Parkhomenko, K.V., Golikov, S.D., Dedov, A.G., and Moiseev, I.I., Unexpected interaction between the components of a catalyst of methane oxidative coupling, Dokl. Phys. Chem., 2013, vol. 448, no. 2, pp. 19–22.

    Article  CAS  Google Scholar 

  12. Nipan, G.D., Artukh, V.A., Yusupov, V.S., Loktev, A.S., Spesivtsev, N.A., Dedov, A.G., and Moiseev, I.I., Pressure effect on the formation of active components of a catalyst for methane oxidative coupling, Dokl. Phys. Chem., 2014, vol. 455, no. 2, pp. 60–63.

    Article  CAS  Google Scholar 

  13. Nipan, G.D., Artukh, V.A., Yusupov, V.S., Loktev, A.S., Spesivtsev, N.A., Dedov, A.G., and Moiseev, I.I., Effect of pressure on the phase composition of Li(Na)/W/Mn/SiO2 composites and their catalytic activity for oxidative coupling of methane, Inorg. Mater., 2014, vol. 50, no. 9, pp. 912–916.

    Article  CAS  Google Scholar 

  14. Nipan, G.D., Phase states of Na/W/Mn/SiO2 composites at temperatures of catalytic oxidative coupling of methane, Inorg. Mater., 2014, vol. 50, no. 10, pp. 1012–1018.

    Article  CAS  Google Scholar 

  15. Kracek, F.C., Binary system Li2O-SiO2, J. Phys. Chem., 1929, vol. 34, no. 12, pp. 2641–2650.

    Article  Google Scholar 

  16. Kracek, F.C., Phase equilibrium relations in the system Na2SiO3-Li2SiO3-SiO2, J. Am. Chem. Soc, 1939, vol. 61, no. 10, pp. 2863–2877.

    Article  CAS  Google Scholar 

  17. Paulsen, J.M. and Dahn, J.R., Phase diagram of Li-Mn-O spinel in air, Chem. Mater., 1999, vol. 11, no. 11, pp. 3065–3079.

    Article  CAS  Google Scholar 

  18. Longo, R.C., Kong, F.T., Santosh, K.C., Park, M.S., Yoon, J., Yeon, D.H., Park, J.H., Doo, S.J., and Cho, K., Phase stability of Li-Mn-O oxides as cathode materials for the Li-ion batteries: insights from ab initio calcu lations, Phys. Chem. Chem. Phys., 2014, vol. 16, no. 23, pp. 11 218–11 227.

    Article  CAS  Google Scholar 

  19. Thackeray, M.M., Manganese oxides for lithium batteries, Prog. Solid State Chem., 1997, vol. 25, nos. 1–2, pp. 1–71.

    Article  CAS  Google Scholar 

  20. Johnson, C.S., Development and utility manganese oxides as cathodes in lithium batteries, J. Power Sources, 2007, vol. 165, no. 2, pp. 559–565.

    Article  CAS  Google Scholar 

  21. Julien, C.M., Local structure of lithiated manganese oxides, Solid State Ionics, 2006, vol. 177, nos. 1–2, pp. 11–19.

    Article  CAS  Google Scholar 

  22. Wang, D., Liu, L.M., Zhao, S.J., Li, B.H., Liu, H., and Lang, X.F., β-MnO2 as a cathode material for lithium ion batteries from first principles calculations, Phys. Chem. Chem. Phys., 2013, vol. 15, no. 23, pp. 9075–9083.

    Article  CAS  Google Scholar 

  23. Oswald, H.R., Feitknecht, W., and Wampetich, M.J., Crystal data of Mn5O8 and Cd2Mn3O8, Nature, 1965, vol. 207, no. 4992, p. 72.

    Article  Google Scholar 

  24. Palos, A.I., Anne, M., and Strobel, P., Topotactic reactions, structural studies, and lithium intercalation in cation-deficient spinels with formula close to Li2Mn4O9, J. Solid State Chem., 2001, vol. 160, no. 1, pp. 108–117.

    Article  CAS  Google Scholar 

  25. Tang, X., Huang, B., and He, Y., Phase transition of lithiated-spinel Li2Mn2O4 at high temperature, Trans. Nonferr. Met. Soc. China, 2006, vol. 16, no. 2, pp. 438–444.

    Article  CAS  Google Scholar 

  26. Cho, J., Kim, T.J., and Park, B., The effect of a metaloxide coating on the cycling behavior at 55°C in orthorhombic LiMnO2 cathode materials, J. Electrochem. Soc., 2002, vol. 149, no. 3, pp. 288–292.

    Article  Google Scholar 

  27. Lowe, M.A., Gao, J., and Abruna, H., In operando X-ray of the conversion reaction in lithium battery anodes, J. Mater. Chem. A, 2013, vol. 1, no. 6, pp. 2094–2103.

    Article  CAS  Google Scholar 

  28. Thackeray, M.M., Spinel electrodes for lithium batteries, J. Am. Ceram. Soc., 1999, vol. 82, no. 12, pp. 3347–3354.

    Article  CAS  Google Scholar 

  29. Tsuji, T., Umakoshi, H., and Yamamura, Y., Thermodynamic properties of undoped and Fe-doped LiMn2O4 at high temperature, J. Phys. Chem. Solids, 2005, vol. 66, nos. 2–4, pp. 283–287.

    Article  CAS  Google Scholar 

  30. Narukava, S., Takeda, Y., Nishijima, M., Imanishi, N., Yamamoto, O., and Tabuchi, M., Anti-fluorite type Li6CoO4, Li6FeO4, and Li6MnO4 as the cathode for lithium secondary batteries, Solid State Ionics, 1999, vol. 122, nos. 1–4, pp. 59–64.

    Article  Google Scholar 

  31. Kirklin, S., Chan, M.K., Trahey, L., Thackeray, M.M., and Wolverton, C., High-throughput screening of high-capacity electrodes for hybrid Li-ion-Li-O2 cells, Phys. Chem. Chem. Phys., 2014, vol. 16, no. 40, pp. 22 073–22 082.

    Article  CAS  Google Scholar 

  32. Dedov, A.G., Loktev, A.S., Nipan, G.D., Dorokhov, S.N., Golikov, S.D., Spesivtsev, N.A., and Moiseev, I.I., Oxidative coupling of methane to ethylene: effect of the preparation procedure on the phase composition and catalytic properties of Li-W-Mn-O-SiO2 composite materials, Petroleum Chemistry, 2015, vol. 55, no. 2 (in press).

    Google Scholar 

  33. Réau, J.M., Fouassier, C. and Hagenmuller, P., Sur quelques nouvelles phases oxygénés ternaires des systèmes A2O-MO3 de formules A4MO5 et A6Mo6 (A = Li, Na; M = Mo, W), Bull. Soc. Chim. Fr., 1967, no. 10, pp. 3873–3876.

    Google Scholar 

  34. Parmentier, M., Gleitzer, Ch., and Aubry, J., Un tungstate basique de lithium Li6W2O9, C. R. Seances Acad. Sci., Ser. C, 1972, vol. 274, pp. 1681–1683.

    CAS  Google Scholar 

  35. Parmentier, M., Réau, J.M., Fouassier, C., and Gleitzer, C., Polymolybdates et polytungstates de lithium, Bull. Soc. Chim. Fr., 1972, no. 5, pp. 1743–1746.

    Google Scholar 

  36. Hauck, J., Uranates(VI) and tungstates(VI) within the system Li2O-UO3-WO3, J. Inorg. Nucl. Chem., 1974, vol. 36, no. 10, pp. 2291–2298.

    Article  CAS  Google Scholar 

  37. Chang, L.Y.L. and Sachdev, S., Alkali tungstates: stability relations in the systems A2O WO3-WO3, J. Am. Ceram. Soc., 1975, vol. 58, nos. 7–8, pp. 267–270.

    Article  CAS  Google Scholar 

  38. Lv, P., Chen, D., Li, W., Xue, L., Huang, F., and Liang, J., Subsolidus phase relationships in the system ZnO-Li2O-WO3, J. Alloys Compd., 2008, vol. 460, nos. 1–2, pp. 142–146.

    Article  CAS  Google Scholar 

  39. Ji, S., Li, S., Liu, Y., Gao, L., Niu, J., and Xu, C., Role of sodium in the oxidative coupling of methane over Na-W-Mn/SiO2 catalysts, J. Nat. Gas Chem., 1999, vol. 8, no. 1, pp. 1–8.

    CAS  Google Scholar 

  40. Kazenas, E.K. and Tsvetkov, Yu.V., Isparenie oksidov (Vaporization of Oxides), Moscow: Nauka, 1997.

    Google Scholar 

  41. Doh, C.H., Veluchamy, A., Oh, M.W., and Han, B.C., Analysis on the formation of Li4SiO4 and Li2SiO3 through first principle calculations and comparing with experimental data related to lithium battery, J. Electrochem. Sci. Technol., 2011, vol. 2, no. 3, pp. 146–151.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Nipan.

Additional information

Original Russian Text © G.D. Nipan, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 4, pp. 442–448.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nipan, G.D. Phase states of Li/W/Mn/SiO2 composites in catalytic oxidative coupling of methane. Inorg Mater 51, 389–395 (2015). https://doi.org/10.1134/S002016851504010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851504010X

Keywords

Navigation