Skip to main content
Log in

Determination of the Density of the Earth’s Core Based on the Equations of State of Iron and Titanium at High Pressures and Temperatures

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

Using previously developed equations of state for iron and titanium, the density of the Earth’s core was calculated at a mass content of titanium in a mixture with iron of ~20%. This concentration is taken from data for high-titanium (HT) basalts, the formation of which in large igneous provinces is hypothetically associated with the ascent of thermal plumes in the mantle from the core to the surface. The calculated density on pressure dependences in the outer liquid and inner solid cores satisfactorily agree with the data of the preliminary reference Earth model (PREM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Dehant, V., Campuzano, S.A., de Santis, A.D., and van Westrenen, W., Surv. Geophys., 2022, vol. 43, no. 1, p. 263.

    Article  ADS  Google Scholar 

  2. Dziewonski, A.M. and Anderson, D.L., Phys. Earth Planet. Inter, 1981, vol. 25, p. 297.

    Article  ADS  Google Scholar 

  3. Bogatikov, O.A. and Sharkov, E.V., Petrology, 2008, vol. 16, no. 7, p. 629.

    Article  Google Scholar 

  4. Sharkov, E.V. and Bogatikov, O.A., Dokl. Earth Sci., 2015, vol. 462, no. 3, p. 346.

    Article  Google Scholar 

  5. Sharkov, E.V., Bogina, M.M., Chistyakov, A.V., and Zlobin, V.L., Vulkanol. Seismol., 2020, no. 5, p. 51.

  6. Grachev, A.F., Fiz. Zemli, 2000, no. 4, p. 3.

  7. Dobretsov, N.L., Kirdyashkin, A.G., and Kirdyashkin, A.A., Glubinnaya geodinamika (Deep Geodynamics), Novosibirsk: Sib. Ots. Ross. Akad. Nauk, 2001, p. 408.

  8. Campbell, I.H., Elements, 2005, vol. 1, p. 265.

    Article  ADS  Google Scholar 

  9. Belyakova, M.Yu., Zhernokletov, M.V., Sutulov, Yu.N., and Trunin, R.F., Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, 1991, no. 1, p. 99.

  10. Charakhchyan, A.A., Milyavskii, V.V., and Khishchenko, K.V., High Temp., 2009, 47, p. 235.

    Article  Google Scholar 

  11. Maevskii, K.K., Teplofiz. Vys. Temp., 2021, vol. 59, no. 5, p. 701.

    Google Scholar 

  12. Maevskii, K.K., Teplofiz. Vys. Temp., 2022, vol. 60, no. 6, p. 837.

    Google Scholar 

  13. Militzer, B., Gonzalez-Cataldo, F., Zhang, S., Driver, K.P., and Soubiran, FPhys. Rev. E, 2021, vol. 103, p. 013203.

    Article  ADS  Google Scholar 

  14. Pik, R., Deniel, K., Coulon, C., Yirgu, G., Hofmann, C., and Ayalew, D., J. Volcanol. Geotherm. Res., 1998, vol. 81, p. 91.

    Article  ADS  Google Scholar 

  15. Natali, C., Beccaluva, L., Bianchini, G.G., Ellam, R.M., Savo, A.G., Siena, F., and Stuart, F.M., Gondwana Res., 2016, vol. 34, p. 29.

    Article  ADS  Google Scholar 

  16. Natali, C., Beccaluva, L., Bianchini, G.G., and Siena, F., in The Crust–Mantle and Lithosphere–Asthenosphere Boundaries: Insights from Xenoliths, Orogenic Deep Sections, and Geophysical Studies, Bianchini, G., Bodinier, J.-L., Braga, R., and Wilson, M., Eds., Geol. Soc. Am., 2017, spec. paper 526.

  17. Funtikov, A.I., High Temp., 2003, vol. 41, no. 6, p. 850.

    Article  Google Scholar 

  18. Podurets, M.A., High Temp., 2000, vol. 38, no. 6, p. 860.

    Article  Google Scholar 

  19. Fortov, V.E. and Lomonosov, I.V., Shock Waves, 2010, vol. 20, p. 53.

    Article  ADS  Google Scholar 

  20. Kerley, G.I., Equations of state for titanium and Ti6A14V alloy, Sandia National Laboratories Report SAND 2003-3785, October 2003.

  21. El’kin, V.M., Mikhailov, V.N., and Mikhailova, T.Yu., Vopr. At. Nauki Tekh., Ser. Teor. Prikl. Fiz., 2017, no. 1, p. 28.

  22. Medvedev, A.B., Combust., Explos. Shock Waves, 2014, vol. 50, no. 5, p. 582.

    Article  Google Scholar 

  23. Trunin, R.F., Simakov, G.V., and Medvedev, A.B., Teplofiz. Vys. Temp., 1999, vol. 37, no. 6, p. 881.

    Google Scholar 

  24. Gibson, S.A., Thompson, R.N., Dickin, A.P., and Leonardos, O.H., Earth Planet. Sci. Lett., 1996, vol. 141, p. 325.

    Article  ADS  Google Scholar 

  25. Machado, F.B., Rocha-Junior, E.R.V., Marques, L.S., Nardy, A.J.R., Zezzo, L.V., and Marteleto, N.S., Braz. J. Geol., 2018, vol. 48, no. 2, p. 177.

    Article  Google Scholar 

  26. Song, X.-Y., Qi, H.-W., Hu, R.-Z., Chen, L.-M., and Yu, S.-Y., Geochem., Geophys., Geosyst., 2013, vol. 14, p. 712.

    Article  ADS  Google Scholar 

  27. Escuder-Viruete, J., Perez-Estaun, A., Contreras, F., Joubert, M., Weis, D., Ullrich, T.D., and Spadea, P., J. Geophys. Res., 2007, vol. 112, p. B04203.

    Article  ADS  Google Scholar 

  28. Medvedev, A.B., Vopr. At. Nauki Tekh., Ser. Teor. Prikl. Fiz., 1992, no. 1, p. 12.

  29. Medvedev, A.B. and Trunin, R.F., Phys.—Usp., 2012, vol. 55, p. 773.

    Article  Google Scholar 

  30. Medvedev, A.B., Combust., Explos. Shock Waves, 2022, vol. 58, no. 6, p. 719.

    Article  Google Scholar 

  31. Sinmyo, R., Hirose, K., and Ohishi, Y., Earth Planet. Sci. Lett., 2019, vol. 510, p. 45.

    Article  ADS  Google Scholar 

  32. Hirao, N., Akahama, Y., and Ohishi, Y., Matter Radiat. Extremes, 2022, vol. 7, p. 038403.

    Google Scholar 

  33. Kuwayama, Y., Morard, G., Nakajima, Y., Hirose, K., Baron, A.Q.R., Kawaguchi, S.I., Tsuchiya, T., Ishikawa, D., Hirao, N., and Ohishi, Y., Phys. Rev. Lett., 2020, vol. 124, p. 165701.

    Article  ADS  Google Scholar 

  34. Dewaele, A., Stutzmann, V., Bouchet, J., Bottin, F., Occelli, F., and Mezouar, M., Phys. Rev. B, 2015, vol. 91, p. 134108.

    Article  ADS  Google Scholar 

  35. Akahama, Y., Kawaguchi, S., Hirao, N., and Ohishi, Y., J. Appl. Phys., 2020, vol. 128, p. 035901.

    Article  ADS  Google Scholar 

  36. Eggert, J.H., Hicks, D.G., Celliers, P.M., Bradley, D.K., McWilliams, R.S., Jeanloz, R., Miller, J.E., Boehly, T.R., and Collins, G.W., Nat. Phys., 2010, vol. 6, p. 40.

    Article  Google Scholar 

  37. Pecker, S., Eliezer, S., Fisher, D., and Henis, Z., J. Appl. Phys., 2005, vol. 98, p. 043516.

    Article  ADS  Google Scholar 

  38. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem. Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1997, vol. 2, p. 1024.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks A.M. Podurets and the reviewer for helpful comments.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Medvedev.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, A.B. Determination of the Density of the Earth’s Core Based on the Equations of State of Iron and Titanium at High Pressures and Temperatures. High Temp 61, 785–789 (2023). https://doi.org/10.1134/S0018151X23060044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X23060044

Navigation