Skip to main content
Log in

Numerical Simulation of the Interaction of a Shock Wave with a Foam Layer Using a Two-Fluid Approach

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The article studies the applicability of the Baer–Nunziato two-fluid model to the problem of interaction of a shock wave with a foam layer. The determining system of equations is formulated. A computational algorithm based on the Harten–Lax–Van Leer scheme with contact discontinuity resolution, including phase velocity and pressure relaxation stages, is proposed and described in detail. Using the proposed computational technology, the problem of propagation of a weak perturbation in a two-phase medium is considered. The propagation velocity obtained is close to the estimate using Wood formula. The problem of the interaction of a shock wave with a foam layer near an impenetrable wall is also considered. The formulation corresponds to full-scale experiments. The nonstationary wave dynamics realized in this problem using the proposed model is described. Good qualitative and quantitative agreement is obtained between the calculation results and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Britan, A.B., Zinovik, I.N., and Levin, V.A., Combust., Explos. Shock Waves, 1992, vol. 28, no. 5, p. 550.

    Article  Google Scholar 

  2. Sembian, S., Liverts, M., and Apazidis, N., Phys. Fluids, 2016, vol. 28, no. 9, p. 096105.

    Article  ADS  Google Scholar 

  3. Kichatov, B., Korshunov, A., Kiverin, A., and Son, E., Fuel, 2017, vol. 203, p. 261.

    Article  CAS  Google Scholar 

  4. Kichatov, B., Korshunov, A., Gubernov, V., Kiverin, A., and Yakovenko, I., Fuel Proc. Technol., 2020, vol. 198, p. 106230.

    Article  CAS  Google Scholar 

  5. Kichatov, B., Korshunov, A., Kiverin, A., and Medvetskaya, N., Fuel Proc. Technol., 2019, vol. 186, p. 25.

    Article  CAS  Google Scholar 

  6. Yakovenko, I.S. and Kiverin, A.D., High Temp., 2022, vol. 60, no. 6, p. 860.

    Article  CAS  Google Scholar 

  7. Surov, V.S., High Temp., 2000, vol. 38, no. 1, p. 97.

    Article  CAS  Google Scholar 

  8. Gubaidullin, D.A. and Zaripov, R.R., High Temp., 2021, vol. 59, p. 121.

    Article  CAS  Google Scholar 

  9. Gubaidullin, D.A. and Fedorov, Yu.V., High Temp., 2022, vol. 60, p. S44.

    Article  CAS  Google Scholar 

  10. Kiverin, A., Yakovenko, I., Kichatov, B., and Korshunov, A., Fuel, 2022, vol. 320, p. 123824.

    Article  CAS  Google Scholar 

  11. Kiverin, A. and Yakovenko, I., Energies, 2021, vol. 14, no. 19, p. 6233.

    Article  CAS  Google Scholar 

  12. Poroshyna, Y.E. and Utkin, P.S., Int. J. Multiphase Flow, 2021, vol. 142, p. 103718.

    Article  CAS  Google Scholar 

  13. Baer, M.R. and Nunziato, J.W., Int. J. Multiphase Flow, 1986, vol. 12, no. 6, p. 861.

    Article  CAS  Google Scholar 

  14. Saurel, R. and Abrall, R., J. Comput. Phys., 1999, vol. 150, p. 425.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Utkin, P.S. and Fortova, S.V., Comp. Math. Math. Phys., 2018, vol. 58, no. 8, p. 1377.

    Article  Google Scholar 

  16. Chuprov, P., Utkin, P., and Fortova, S., Metals, 2021, vol. 11, no. 8, p. 1233.

    Article  CAS  Google Scholar 

  17. Baer, M.R., Shock Waves, 1992, vol. 2, p. 121.

    Article  ADS  Google Scholar 

  18. Warren, W.E. and Kraynik, A.M., J. Appl. Mech., 1991, vol. 58, p. 376.

    Article  ADS  Google Scholar 

  19. Toro, E.F., Spruce, M., and Speares, W., Shock Waves, 1994, vol. 4, p. 25.

    Article  ADS  Google Scholar 

  20. Chuprov, P.A., Poroshina, Ya.E., and Utkin, P.S., Gorenie Vzryv, 2022, vol. 15, no. 2, p. 67.

    Article  Google Scholar 

  21. Utkin, P.S., Russ. J. Phys. Chem. B, 2017, vol. 11, p. 963.

    Article  CAS  Google Scholar 

  22. Wood, A., A Textbook of Sound, London: G. Bell, 1941.

    Google Scholar 

  23. Britan, A.B., Zinovik, I.N., Levin, V.A., Mitichkin, S.Yu., Testov, V.G., and Haibo Hu, Zh. Tech. Fiz., 1995, vol. 6, no. 7, p. 19.

  24. Kutushev, A.G. and Rudakov, D.A., Prikl. Mech. Tech. Fiz., 1993, no. 5, p. 25.

  25. Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multiple-Phase Media), Moscow: Nauka, 1987, part 1.

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement with the Joint Institute of High Temperatures, Russian Academy of Sciences, no. 075-15-2020-785 of September 23, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Chuprov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuprov, P.A., Utkin, P.S., Fortova, S.V. et al. Numerical Simulation of the Interaction of a Shock Wave with a Foam Layer Using a Two-Fluid Approach. High Temp 61, 409–416 (2023). https://doi.org/10.1134/S0018151X23030197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X23030197

Navigation