Skip to main content
Log in

Influence of Electrophysical Properties of Two-Component Nanoparticles on the Concentration of Free Electrons in Thermal Dusty Plasma

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

A simple analytical model has been developed that describes electron emission from the surface of two-component nanoparticles in a thermal dusty plasma. The concentrations of free electrons in the plasma are calculated depending on the composition of nanoparticles, their sizes, and equilibrium temperature of the system. The nonmonotonic nature of the dependence of the concentration of emitted electrons on the concentration of nanoparticles has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Pustylnik, M.Y., Pikalev, A.A., Zobnin, A.V., Semenov, I.L., Thomas, H.M., and Petrov, O.F., Contrib. Plasma Phys., 2021, vol. 61, p. 10.

    Article  Google Scholar 

  2. Fairushin, I.I., Petrov, O.F., and Vasil’ev, M.M., J. Exp. Theor. Phys., 2020, vol. 130, no. 3, no. 477.

  3. Fairushin, I.I., Khrapak, S.A., and Mokshin, A.V., Results Phys., 2020, vol. 19, p. 103359.

    Article  Google Scholar 

  4. Rudinsky, A.V. and Yagodnikov, D.A., High Temp., 2019, vol. 57, no. 5, p. 753.

    Article  Google Scholar 

  5. Vishnyakov, V.I., Phys. Rev. E, 2012, vol. 85, no. 2, p. 026402.

    Article  ADS  Google Scholar 

  6. Vishnyakov, V.I. and Dragan, G.S., Phys. Rev. E, 2006, vol. 74, no. 3, p. 036404.

    Article  ADS  Google Scholar 

  7. Vishnyakov, V.I., Dragan, G.S., and Evtuhov, V.M., Phys. Rev. E, 2007, vol. 76, no. 3, p. 036402.

    Article  ADS  Google Scholar 

  8. Khrapak, S.A., Morfill, G.E., Fortov, V.E., D’yachkov, L.G., Khrapak, A.G., and Petrov, O.F., Phys. Rev. Lett., 2007, vol. 99, no. 5, p. 055003.

    Article  ADS  Google Scholar 

  9. Fairushin, I.I., Dautov, I.G., Kashapov, N.F., and Shamsutdinov, A.R., Tech. Phys. Lett., 2017, vol. 43, no. 1, p. 27.

  10. Fayrushin, I. and Dautov, G., J. Phys.: Conf. Ser., 2013, vol. 479, no. 1, p. 012013.

    Google Scholar 

  11. Fairushin, I.I., High Energy Chem., 2020, vol. 54, no. 6, p. 477.

    Article  Google Scholar 

  12. Fayrushin, I.I., Dautov, I.G., and Kashapov, N.F., Int. J. Environ. Sci. Technol., 2017, vol. 14, no. 12, p. 2555.

    Article  Google Scholar 

  13. Davletov, A.E., Kurbanov, F., and Mukhametkarimov, Y.S., Phys. Plasmas, 2018, vol. 25, no. 12, p. 120701.

    Article  ADS  Google Scholar 

  14. Shigeta, M. and Murphy, A.B., J. Phys. D: Appl. Phys., 2011, vol. 44, no. 17, p. 174025.

    Article  ADS  Google Scholar 

  15. Fairushin, I.I., Saifutdinov, A.I., and Sofronitskii, A.O., High Energy Chem., 2020, vol. 54, no. 2, p. 150.

    Article  Google Scholar 

  16. Tanaka, Y., in Handbook of Thermal Science and Engineering, Kulacki, F., Ed., Berlin: Springer, 2018, p. 2791.

    Google Scholar 

  17. Shigeta, M. and Watanabe, T., J. Appl. Phys., 2010, vol. 108, no. 4, p. 043306.

    Article  ADS  Google Scholar 

  18. Park, K., Hirayama, Y., Shigeta, M., et al., J. Alloys Compd., 2021, vol. 882, p. 160633.

    Article  Google Scholar 

  19. Hirayama, Y., Shigeta, M., Liu, Z., et al., J. Alloys Compd., 2021, vol. 873, p. 159724.

    Article  Google Scholar 

  20. Mamak, M., Choi, S.Y., Stadler, U., et al., J. Mater. Chem., 2010, vol. 20, no. 44, p. 9855.

    Article  Google Scholar 

  21. Sodha, M.S., J. Appl. Phys., 1961, vol. 32, no. 10, p. 2059.

    Article  ADS  Google Scholar 

  22. Yumaguzin, Yu.M., Kornilov, V.M., and Lachinov, A.N., J. Exp. Theor. Phys., 2006, vol. 103, no. 2, p. 264.

    Article  ADS  Google Scholar 

  23. Sozaev, V.A., Loshitskaya, K.P., and Chernysheva, R.A., Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., 2005, no. 9, p. 104.

  24. Smogunov, A.N., Kurkina, L.I., and Farberovich, O.V., Phys. Solid State, vol. 42, no. 10, p. 1898

  25. Korotkov, P.K., Sozaev, V.A., Tkhakakhov, R.B., and Uyanaeva, Z.A., Bull. Russ. Acad. Sci.: Phys., 2009, vol. 73, no. 7, p. 982.

    Article  Google Scholar 

  26. Mamonova, M.V., Prudnikov, V.V., and Prudnikova, I.A., Fizika poverkhnosti. Teoreticheskie modeli i eksperimental’nye metody (Surface Physics: Theoretical Models and Experimental Methods), Moscow: Fizmatlit, 2011.

  27. Roldugin, V.I., Fizikokhimiya poverkhnosti (Physical Chemistry of the Surface), Dolgoprudny: Intellekt, 2011.

  28. Partenskii, M.B., Sov. Phys. Usp., 1979, vol. 22, no. 5, p. 330.

    Article  ADS  Google Scholar 

  29. Partenskii, M.B., Poverkhnost’, 1982, no. 10, p. 15.

  30. Smirnov, M.B. and Krainov, V.P., J. Exp. Theor. Phys., 1999, vol. 88, no. 6, p. 1102.

    Article  ADS  Google Scholar 

  31. Ekardt, W., Phys. Rev. B, 1984, vol. 29, no. 4, p. 1558.

    Article  ADS  Google Scholar 

  32. Ivanov, V.K., Ipatov, A.N., and Kharchenko, V.A., Zh. Eksp. Teor. Fiz., 1996, vol. 109, no. 3, p. 902.

    Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement with JIHT RAS no. 075-15-2020-785 of September 23, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Fairushin.

Ethics declarations

The author declare that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fairushin, I.I. Influence of Electrophysical Properties of Two-Component Nanoparticles on the Concentration of Free Electrons in Thermal Dusty Plasma. High Temp 60, 752–755 (2022). https://doi.org/10.1134/S0018151X22050200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X22050200

Navigation