Skip to main content
Log in

AC Electric Discharge in a 1% Sodium Chloride Solution in Distilled Water at Low Pressures

  • SHORT COMMUNICATIONS
  • Published:
High Temperature Aims and scope

Abstract

The results of an experimental study of an alternating current discharge with a frequency of 50 Hz in a gas-liquid medium of a 1% of NaCl solution in distilled water with air bubbles and microdischarges inside a dielectric tube with a diameter of 10 mm at reduced pressures for various interelectrode distances of copper electrodes—50, 100, and 150 mm—are presented. A qualitative mechanism for the development of a breakdown and discharge at low pressures in a gas-liquid medium is established. It is found that with a decrease in pressure, a gas-liquid medium is formed, saturated with small air bubbles ranging in size from 1 to 3 mm as a result of boiling and electrolysis. This, in turn, leads to a breakdown and rapid discharge ignition in a porous medium near a solid electrode. The transition of an electric discharge with microdischarges to a volumetric discharge at low pressures is established. A fast Fourier transform was carried out, and the discharge voltage and current spectra were determined at reduced pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Fortov, V.E., Son, E.E., Bromberg L., Gaisin, F.M., Son, K.E., O Jong Hae, and I Hae Young, Plazmennye tekhnologii (na koreiskom yazyke) (Plasma Technologies (in Korean)), Dolgoprudnyi: Mosk. Fiz.-Tekh. Inst., KOFST 2006.

  2. Smirnov, B.M., Babaeva, N.Yu., Naidis, G.V., Panov, V.A., Son, E.E., and Tereshonok, D.V., High Temp., 2019, vol. 57, no. 2, p. 286.

    Article  Google Scholar 

  3. Gaisin, A.F. and Nasibullin, R.T., Plasma Phys. Rep., 2011, vol. 37, no. 10, p. 896.

    ADS  Google Scholar 

  4. Son, E.E., Suvorov, I.F., Kakaurov, S.V., Gaisin, A.F., Samitova, G.T., Solov’eva, T.L., Yudin, A.S., and Rakhletsova, T.V., High Temp., 2014, vol. 52, no. 4, p. 490.

    Article  Google Scholar 

  5. Bagautdinova, L.N., Gaisin, F.M., Abdullin, I.Sh., Mustafin, T.B., Gaisin, A.F., Samitova, G.T., Gaisin, A.F. and Gasimova, L.Sh., Vestn. Kazansk. Tekhnol. Univ., 2013, vol. 16, no. 19, p. 298.

    Google Scholar 

  6. Bagautdinova, L.N., Gaisin, A.F., and Son, E.E., Vestn. Kazansk. Tekhnol. Univ., 2012, no. 1, p. 101.

  7. Bruggeman, P., Degroote, J., Vierendeels, Y., and Leys, C., Plasma Sources Sci. Technol., 2008, vol. 17, 025008.

    Article  ADS  Google Scholar 

  8. Akishev, Yu.S., Grushin, M.E., Karal’nik, V.B., Monich, A.E., Pan’kin, M.V., Trushkin, N.I., Kholodenko, V.P., et al., Plasma Phys. Rep., 2006, vol. 32, no. 12, p. 1052.

    Article  ADS  Google Scholar 

  9. Anpilov, A.M., Barkhudarov, E.M., Bark, Yu.B., Zadiraka, Yu.V., Christofi, M., Kozlov, Yu.N., Kossyi, I.A., et al., J. Phys. D: Appl. Phys., 2001, vol. 34, p. 993.

    Article  ADS  Google Scholar 

  10. Samitova, G.T., Gaisin, A.F., Mustafin, T.B., Gaisin, A.F., Son, E.E., Vesel’ev, D.A., and Gaisin, F.M., High Temp., 2011, vol. 49, no. 5, p. 762.

    Article  Google Scholar 

  11. Samitova, G.T., Gaisin, Al.F., Abdullin, I.Sh., and Gaisin, F.M., Vestn. Kazansk. Tekhnol. Univ., 2011, vol. 14, p. 232.

    Google Scholar 

  12. Fakhrutdinova, I.T., Gaisin, A.F., Son, E.E., Galimzyanov, I.I., Gaisin, F.M., and Mirkhanov, D.N., High Temp., 2017, vol. 55, no. 6, p. 935.

    Article  Google Scholar 

  13. Akhatov, M.F., Kayumov, R.R., Mardanov, R.R., and Saifutdinova, I.I., J. Phys.: Conf. Ser., 2020, vol. 1588, 012004.

    Google Scholar 

  14. Galimzyanov, I.I., Gaisin, A.F., Fakhrutdinova, I.T., Shakirova, E.F., Akhatov, M.F., and Kayumov, R.R., High Temp., 2018, vol. 56, no. 2, p. 296.

    Article  Google Scholar 

  15. Valiev, R.I., Khafizov, A.A., Bagautdinova, L.N., Gaisin, F.M., Basyrov, R.Sh., Gaisin, Az.F., and Gaisin, Al.F., High Temp., 2022, vol. 60, suppl. 1, p. S127.

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 21-79-30062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Bagautdinova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khafizov, A.A., Valiev, R.I., Bagautdinova, L.N. et al. AC Electric Discharge in a 1% Sodium Chloride Solution in Distilled Water at Low Pressures. High Temp 60, 570–573 (2022). https://doi.org/10.1134/S0018151X22020067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X22020067

Navigation