Abstract
The propagation of the nonplanar (both cylindrical and spherical) electro-acoustic waves, particularly ion-acoustic waves in a strongly coupled cryogenic electron-ion plasma has been studied utilizing the generalized quantum hydrodynamic model applicable for the cryogenic situation. The Korteweg–de Vries and Burgers equations are derived by adopting the reductive perturbation technique. The basic features (e.g., phase speed, amplitude, and width, etc.) of the ion-acoustic solitary and shock waves, are identified by analyzing the stationary solitary, and shock wave solutions of the Korteweg–de Vries and Burgers equations, respectively. It is found that the basic characteristics of the IA nonlinear structures in non-planar geometry are significantly modified by the effects of the ratio of plasma particle number densities, the Fermi temperature and pressure of electrons, the viscous coefficient, etc. The results of this theoretical investigation may be useful in describing the physics of the ion-acoustic nonlinear features of the localized electrostatic disturbances in quantum cryogenic plasmas (viz. laser-produced plasmas, super-intense laser-dense matter experiments, etc.).











Similar content being viewed by others
REFERENCES
Silva, L.O., Bingham, R., Dawson, J.M., Mendonça, J.T., and Shukla, P.K., Phys. Rev. Lett., 1999, vol. 83, p. 2703.
Shapiro, S.L. and Teukolsky, S.A., Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects, New York: Wiley, 1983.
Haug, H. and Koch, S.W., Quantum Theory of the Optical and Electronic Properties of Semiconductors, Singapore: World Sci., 2004.
Markowich, A., Ringhofer, C., and Schmeiser, C., Semiconductor Equations, New York: Springer, 1990.
Manfredi, G. and Haas, F., Phys. Rev. B: Condens. Matter Mater. Phys., 2001, vol. 64, 075316.
Shpatakovskaya, G.V., J. Exp. Theor. Phys., 2006, vol. 102, p. 466.
Ang, L.K., Koh, W.S., Lau, Y.Y., and Kwan, T.J.T., Phys. Plasmas, 2006, vol. 13, 056701.
Ang, L.K. and Zhang, P., Phys. Rev. Lett., 2007, vol. 98, 164802.
Jung, Y.D., Phys. Plasmas, 2001, vol. 8, p. 3842.
Kremp, D., Bornath, T., Bonitz, M., and Schlanges, M., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, vol. 60, p. 4725.
Washimi, H. and Taniuti, T., Phys. Rev. Lett., 1966, vol. 17, p. 996.
Mamun, A.A. and Shukla, P.K., Europhys. Lett., 2011, vol. 94, 65002.
Ikezi, H., Taylor, R.J., and Baker, D.R., Phys. Rev. Lett., 1970, vol. 25, p. 11.
Andersen, H.K., D’Angelo, N., Michelsen, P., and Nielsen, P., Phys. Rev. Lett., 1967, vol. 19, p. 149.
Tran, M.Q., Phys. Scr., 1979, vol. 20, p. 317.
Nakamura, Y., IEEE Trans. Plasma Sci., 1982, vol. 7, p. 232.
Chan, C., Khazei, M., Lonngren, K.E., and Hershkowitz, N., Phys. Fluids, 1981, vol. 24, p. 1452.
Haas, F., Garcia, L.G., Goedert, J., and Manfredi, G., Phys. Plasmas, 2003, vol. 10, p. 3858.
Pines, D., J. Nucl. Energy, 1961, vol. 2, p. 5.
Antipov, S.N., Asinovskii, E.I., Fortov, V.E., Kirillin, A.V., Markovets, V.V., Petrov, O.F., and Platonov, V.I., Phys. Plasmas, 2007, vol. 14, 090701.
Kojima, C., Minami, K., Qin, W., and Ishihara, O., IEEE Trans. Plasma Sci., 2003, vol. 31, p. 1379.
Rosenberg, M. and Kalman, G.J., Europhys. Lett., 2006, vol. 75, p. 894.
Delpech, J.F. and Gauthier, J.C., Phys. Rev. A: At., Mol., Opt. Phys., 1972, vol. 6, p. 1932.
Mamun, A.A. and Shukla, P.K., Phys. Lett. A, 2009, vol. 373, p. 3161.
Ishihara, O., Sekine, W., Kubota, J., Uotani, N., Chikasue, M., and Shindo, M., AIP Conf. Proc., 2009, vol. 1188, p. 110.
Hossen, M.R., Nahar, L., and Mamun, A.A., Braz. J. Phys., 2014, vol. 44, p. 638.
Hossen, M.A. and Mamun, A.A., Phys. Plasmas, 2015, vol. 22, 073505.
Khan, S.A., Astrophys. Space Sci., 2013, vol. 343, p. 683.
Mushtaq, A. and Khan, S.A., Phys. Plasmas, 2007, vol. 14, 052307.
Landau, L.D. and Lifshitz, E.M., Statistical Physics, Oxford: Butterworth-Heinemann, 1980.
Zobaer, M.S., Mukta, K.N., Nahar, L., Roy, N., and Mamun, A.A., IEEE Trans. Plasma Sci., 2013, vol. 41, p. 1614.
Maxon, S. and Viecelli, J., Phys. Rev. Lett., 1974, vol. 32, p. 4.
Murklund, M. and Shukla, P.K., Rev. Mod. Phys., 2006, vol. 78, p. 591.
Berezhiani, V.I., Tskhakaya, D.D., and Shukla, P.K., Phys. Rev. A: At., Mol., Opt. Phys., 1992, vol. 46, p. 6608.
Khan, S.A., Indian J. Phys., 2014, vol. 88, p. 433.
Dip, P.R., Hossen, M.A., Salahuddin, M., and Mamun, A.A., J. Korean Phys. Soc., 2016, vol. 68, p. 520.
Goldan, P.D. and Goldstein, L., Phys. Rev., 1965, vol. 138, p. A39.
ACKNOWLEDGMENTS
P.R. Dip, one of the authors, is grateful to the Ministry of Education, Bangladesh for supporting our Plasma Physics Research Laboratory, Jahangirnagar University through the Higher Education Quality Enhancement Project— HEQEP (a project of University Grants Commission, Bangladesh).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dip, P.R., Hossen, M.A., Salahuddin, M. et al. Cylindrical and Spherical Electro-acoustic Waves in a Strongly Coupled Cryogenic Quantum Plasma. High Temp 58, 781–788 (2020). https://doi.org/10.1134/S0018151X20360031
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0018151X20360031