Skip to main content
Log in

Cylindrical and Spherical Electro-acoustic Waves in a Strongly Coupled Cryogenic Quantum Plasma

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The propagation of the nonplanar (both cylindrical and spherical) electro-acoustic waves, particularly ion-acoustic waves in a strongly coupled cryogenic electron-ion plasma has been studied utilizing the generalized quantum hydrodynamic model applicable for the cryogenic situation. The Korteweg–de Vries and Burgers equations are derived by adopting the reductive perturbation technique. The basic features (e.g., phase speed, amplitude, and width, etc.) of the ion-acoustic solitary and shock waves, are identified by analyzing the stationary solitary, and shock wave solutions of the Korteweg–de Vries and Burgers equations, respectively. It is found that the basic characteristics of the IA nonlinear structures in non-planar geometry are significantly modified by the effects of the ratio of plasma particle number densities, the Fermi temperature and pressure of electrons, the viscous coefficient, etc. The results of this theoretical investigation may be useful in describing the physics of the ion-acoustic nonlinear features of the localized electrostatic disturbances in quantum cryogenic plasmas (viz. laser-produced plasmas, super-intense laser-dense matter experiments, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Silva, L.O., Bingham, R., Dawson, J.M., Mendonça, J.T., and Shukla, P.K., Phys. Rev. Lett., 1999, vol. 83, p. 2703.

    Article  ADS  Google Scholar 

  2. Shapiro, S.L. and Teukolsky, S.A., Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects, New York: Wiley, 1983.

    Book  Google Scholar 

  3. Haug, H. and Koch, S.W., Quantum Theory of the Optical and Electronic Properties of Semiconductors, Singapore: World Sci., 2004.

    Book  Google Scholar 

  4. Markowich, A., Ringhofer, C., and Schmeiser, C., Semiconductor Equations, New York: Springer, 1990.

    Book  Google Scholar 

  5. Manfredi, G. and Haas, F., Phys. Rev. B: Condens. Matter Mater. Phys., 2001, vol. 64, 075316.

    Article  ADS  Google Scholar 

  6. Shpatakovskaya, G.V., J. Exp. Theor. Phys., 2006, vol. 102, p. 466.

    Article  ADS  Google Scholar 

  7. Ang, L.K., Koh, W.S., Lau, Y.Y., and Kwan, T.J.T., Phys. Plasmas, 2006, vol. 13, 056701.

    Article  ADS  Google Scholar 

  8. Ang, L.K. and Zhang, P., Phys. Rev. Lett., 2007, vol. 98, 164802.

    Article  ADS  Google Scholar 

  9. Jung, Y.D., Phys. Plasmas, 2001, vol. 8, p. 3842.

    Article  ADS  Google Scholar 

  10. Kremp, D., Bornath, T., Bonitz, M., and Schlanges, M., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, vol. 60, p. 4725.

    Article  Google Scholar 

  11. Washimi, H. and Taniuti, T., Phys. Rev. Lett., 1966, vol. 17, p. 996.

    Article  ADS  Google Scholar 

  12. Mamun, A.A. and Shukla, P.K., Europhys. Lett., 2011, vol. 94, 65002.

    Article  ADS  Google Scholar 

  13. Ikezi, H., Taylor, R.J., and Baker, D.R., Phys. Rev. Lett., 1970, vol. 25, p. 11.

    Article  ADS  Google Scholar 

  14. Andersen, H.K., D’Angelo, N., Michelsen, P., and Nielsen, P., Phys. Rev. Lett., 1967, vol. 19, p. 149.

    Article  ADS  Google Scholar 

  15. Tran, M.Q., Phys. Scr., 1979, vol. 20, p. 317.

    Article  ADS  Google Scholar 

  16. Nakamura, Y., IEEE Trans. Plasma Sci., 1982, vol. 7, p. 232.

    Google Scholar 

  17. Chan, C., Khazei, M., Lonngren, K.E., and Hershkowitz, N., Phys. Fluids, 1981, vol. 24, p. 1452.

    Article  ADS  Google Scholar 

  18. Haas, F., Garcia, L.G., Goedert, J., and Manfredi, G., Phys. Plasmas, 2003, vol. 10, p. 3858.

    Article  ADS  Google Scholar 

  19. Pines, D., J. Nucl. Energy, 1961, vol. 2, p. 5.

    Article  ADS  MathSciNet  Google Scholar 

  20. Antipov, S.N., Asinovskii, E.I., Fortov, V.E., Kirillin, A.V., Markovets, V.V., Petrov, O.F., and Platonov, V.I., Phys. Plasmas, 2007, vol. 14, 090701.

    Article  ADS  Google Scholar 

  21. Kojima, C., Minami, K., Qin, W., and Ishihara, O., IEEE Trans. Plasma Sci., 2003, vol. 31, p. 1379.

    Article  ADS  Google Scholar 

  22. Rosenberg, M. and Kalman, G.J., Europhys. Lett., 2006, vol. 75, p. 894.

    Article  ADS  Google Scholar 

  23. Delpech, J.F. and Gauthier, J.C., Phys. Rev. A: At., Mol., Opt. Phys., 1972, vol. 6, p. 1932.

    Google Scholar 

  24. Mamun, A.A. and Shukla, P.K., Phys. Lett. A, 2009, vol. 373, p. 3161.

    Article  ADS  Google Scholar 

  25. Ishihara, O., Sekine, W., Kubota, J., Uotani, N., Chikasue, M., and Shindo, M., AIP Conf. Proc., 2009, vol. 1188, p. 110.

    Article  ADS  Google Scholar 

  26. Hossen, M.R., Nahar, L., and Mamun, A.A., Braz. J. Phys., 2014, vol. 44, p. 638.

    Article  ADS  Google Scholar 

  27. Hossen, M.A. and Mamun, A.A., Phys. Plasmas, 2015, vol. 22, 073505.

    Article  ADS  Google Scholar 

  28. Khan, S.A., Astrophys. Space Sci., 2013, vol. 343, p. 683.

    Article  ADS  Google Scholar 

  29. Mushtaq, A. and Khan, S.A., Phys. Plasmas, 2007, vol. 14, 052307.

    Article  ADS  Google Scholar 

  30. Landau, L.D. and Lifshitz, E.M., Statistical Physics, Oxford: Butterworth-Heinemann, 1980.

    MATH  Google Scholar 

  31. Zobaer, M.S., Mukta, K.N., Nahar, L., Roy, N., and Mamun, A.A., IEEE Trans. Plasma Sci., 2013, vol. 41, p. 1614.

    Article  ADS  Google Scholar 

  32. Maxon, S. and Viecelli, J., Phys. Rev. Lett., 1974, vol. 32, p. 4.

    Article  ADS  Google Scholar 

  33. Murklund, M. and Shukla, P.K., Rev. Mod. Phys., 2006, vol. 78, p. 591.

    Article  ADS  Google Scholar 

  34. Berezhiani, V.I., Tskhakaya, D.D., and Shukla, P.K., Phys. Rev. A: At., Mol., Opt. Phys., 1992, vol. 46, p. 6608.

    Google Scholar 

  35. Khan, S.A., Indian J. Phys., 2014, vol. 88, p. 433.

    Article  ADS  Google Scholar 

  36. Dip, P.R., Hossen, M.A., Salahuddin, M., and Mamun, A.A., J. Korean Phys. Soc., 2016, vol. 68, p. 520.

    Article  ADS  Google Scholar 

  37. Goldan, P.D. and Goldstein, L., Phys. Rev., 1965, vol. 138, p. A39.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

P.R. Dip, one of the authors, is grateful to the Ministry of Education, Bangladesh for supporting our Plasma Physics Research Laboratory, Jahangirnagar University through the Higher Education Quality Enhancement Project— HEQEP (a project of University Grants Commission, Bangladesh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Dip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dip, P.R., Hossen, M.A., Salahuddin, M. et al. Cylindrical and Spherical Electro-acoustic Waves in a Strongly Coupled Cryogenic Quantum Plasma. High Temp 58, 781–788 (2020). https://doi.org/10.1134/S0018151X20360031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20360031