Skip to main content
Log in

Nanoporosity of Polymer Membrane Materials and Sorbents According to Positron Annihilation and Low-Temperature Gas Sorption Data

  • General Aspects of High Energy Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Based on the experimental data obtained by the authors in a number of previous studies, the limits of applicability of positron annihilation lifetime spectroscopy (PALS) and low-temperature gas sorption (LTGS) to determination of nanoporosity (size distribution of nanopores in the range from a few fractions of a nanometer to 50 nm) in polymeric membrane materials and sorbents are discussed. It turns out that none of these methods is universal. The possibility of using each of them is determined by different factors, with the cases considered being finely divided polymer materials and the membranes per se cast from powders. It has been shown that the particle size factor is important for the applicability of LTGS. The possibility of using PALS depends on the concentration of nanopores of a given size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weber M.H. and Lynn, K.G., Principles and Applications of Positron and Positronium Chemistry, Jean, Y.C., Mallon, P.E., and Schrader, D.M., Eds., River Edge, NJ: World Scientific, 2003, p. 167.

  2. Shantarovich, V.P., J. Polym. Sci., Part B: Polym. Phys., 2008, vol. 45, p. 2485.

    Article  CAS  Google Scholar 

  3. Yampolskii, Yu.P., Usp. Khim., 2007, vol. 76, no. 1, p. 66.

    Article  CAS  Google Scholar 

  4. Eldrup, M., Lightbody, D., and Sherwood, J.N., Chem. Phys., 1981, vol. 63, p. 51.

    Article  CAS  Google Scholar 

  5. Burganos, V.N., Comprehensive Membrane Science and Engineering, Drioli, E. and Giorno, L., Eds., Amsterdam: Elsevier, 2010, vol. 1, p. 29.

    Article  CAS  Google Scholar 

  6. Jasinska, B., Koziol, A., and Goworek, T., J. Radoanal. Nucl. Chem., 1996, vol. 210, p. 617.

    Article  CAS  Google Scholar 

  7. Mogensen, O.E., Positron Annihilation in Chemistry, Goldanskii, V.I. and Schaffer, F.P., Eds., Berlin: Springer, 1995, p. 66.

  8. Stepanov, S.V. and Byakov, Principles and Applications of Positron and Positronium Chemistry, Jean, Y.C., Mallon, P.E., and Schrader, D.M., Eds., River Edge, NJ: World Scientific, 2003, p. 117.

  9. Shantarovich, V.P., Gustov, V.W., Belousova, E.V., Polyakova, A.V., Bekeshev, V.G., Kevdina, I.B., Yam-polskii, Yu.P., and Pastukhov, A.V., Acta Phys. Pol., A, 2014, vol. 125, p. 806.

    Article  CAS  Google Scholar 

  10. Shantarovich, V.P., Bekeshev, V.G., Belov, N.A., Nikolaev, A.Yu., Gustov, V.W., Kevdina, I.B., and Filimonov, M.K., High Energy Chem., 2016, vol. 50, no. 4, p. 287.

    Article  CAS  Google Scholar 

  11. Shantarovich, V.P., Bekeshev, V.G., Belov, N.A., Kevdina, I.B., Filimonov, M.K., Ronova, I.A., and Nikolaev, A.Yu., Defect Diffus. Forum, 2016, vol. 373, p. 261.

    Article  Google Scholar 

  12. Shantarovich, V.P., Bekeshev, V.G., Pastukhov, A.V., Davankov, V.A., Krasil’nikova, O.K., Belousova, E.V., Kevdina, I.B., Filimonov, M.K., and Gustov, V.W., J. Phys.: Conf. Ser., 2015, vol. 618, p. 012021.

    Google Scholar 

  13. Belousova, E.V., Bekeshev, V.G., Gustov, V.V., Davankov, V.A., Krasil’nikova, O.K., Kevdina, I.B., Pastukhov, A.V., Filimonov, M.K., and Shantarovich, V.P., High Energy Chem., 2015, vol. 49, no. 3, p. 199.

    Article  CAS  Google Scholar 

  14. Shantarovich, V.P., Bekeshev, V.G., Kevdina, I.B., Yampolskii, Yu.P., Bermeshev, M.V., and Belov, N.A., Acta Phys. Pol., A, 2017, vol. 132, no. 5, p. 1518.

    Article  Google Scholar 

  15. Kirkegaard, P., Pedersen, N.J., and Eldrup, M.M., PATFIT-88: A Data-Processing System for Positron Annihilation Spectra on Mainframe and Personal Computers (Risø-M; No. 2740), Kongens Lyngby: Technical University of Denmark, 1989.

    Google Scholar 

  16. Duda, J.L. and Zielinski, J.M., Diffusion in Polymers, P. Neogi, Ed., New York: Marcel Dekker, 1996, p. 143.

    Google Scholar 

  17. Sing, K.S.W., Surface Area Determination, Everett, D.H. and Ottervill, R.H., Eds., London: Butterworth, 1970, p. 25.

  18. Barrett, E.P., Joyner, L.G., and Halenda, P.P., J. Am. Chem. Soc., 1951, vol. 73, p. 373.

    Article  CAS  Google Scholar 

  19. Horwath, G. and Kawazoe, K., J. Chem. Eng. Jpn., 1983, vol. 16, no. 6, p. 470.

    Article  Google Scholar 

  20. Ronova, I.A., Nikitin, L.N., Sokolova, E.A., Bacosca, I., Sava, I., and Bruma, M., J. Macromol. Sci., 2009, vol. 46, p. 929.

    Article  CAS  Google Scholar 

  21. Vyacheslavov, A.S. and Efremov, M., Metodicheskaya razrabotka MGU im. Lomonosova: Opredelenie ploshchadi poverkhnosti i poristosti materialov metodom sorbtsii gazov (Guidelines for Determining Surface Area and Porosity of Materials by the Gas Sorption Method), Moscow, MGU im. Lomonosova, 2011.

    Google Scholar 

  22. NOVA Operating Manual, Boynton Beach, FL: Quantachrome Instruments, 2005.

  23. NOVAWIN2 V.2.1.: Operating Manual, Boynton Beach, FL: Quantachrome Instruments, 2004.

  24. Saito, A. and Foley, H.C., AIChE J., 1991, vol. 37, no. 3, p. 429.

    Article  CAS  Google Scholar 

  25. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, London: Academic, 1982, 2nd ed.

    Google Scholar 

  26. Gun’ko, V.M., Leboda, R., Skubishevska-Zieba, J., Gawdzik, B., and Charmas, B., Appl. Surf. Sci., 2005, vol. 252, p. 612.

    Article  CAS  Google Scholar 

  27. Heuchel, M., Fritsch, D., Budd, P.M., and McKeown, D., Hofmann, J. Membr. Sci., 2008, vol. 318, p. 84.

    Article  CAS  Google Scholar 

  28. McKeown, N.B., Budd, P.M., Msayib, K.J., Ghanem, B.S., Kingston, H.J., Tattershall, C.E., Makhseed, S., Reynolds, K.J., and Fritsch, D., Chem.-Eur., 2005, vol. 11, p. 2610.

    Article  CAS  Google Scholar 

  29. Budd, P.M, McKeown, N.B., Fritsch D., Yampolskii Yu., and Shantarovich, V., Membrane Gas Separation, Yampolskii, Yu. and Freeman, B., Singapore: Wiley, 2010, p. 30.

  30. Gidley, D.W., Peng, H.G., and Vallery, R.S., Annu. Rev. Mater. Res., 2006, vol. 36, p. 49.

    Article  CAS  Google Scholar 

  31. Shantarovich, V.P., Novikov, Yu.A., Suptel, Z.K., Kevdina, I.B., Khotimskii, V.S., and Yampolskii, Yu.P., Radiat. Phys. Chem., 2000, vol. 58, p. 513.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Shantarovich.

Additional information

Original Russian Text © V.P. Shantarovich, V.G. Bekeshev, I.B. Kevdina, Yu.P. Yampolskii, M.V. Bermeshev, N.A. Belov, 2018, published in Khimiya Vysokikh Energii, 2018, Vol. 52, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shantarovich, V.P., Bekeshev, V.G., Kevdina, I.B. et al. Nanoporosity of Polymer Membrane Materials and Sorbents According to Positron Annihilation and Low-Temperature Gas Sorption Data. High Energy Chem 52, 275–282 (2018). https://doi.org/10.1134/S0018143918040148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143918040148

Keywords

Navigation