Skip to main content
Log in

The Geology of the World Ocean (Arctic and Antarctic): Achievements and New Research

  • Published:
Geotectonics Aims and scope

Abstract

The Gramberg All-Russia Research Institute for Geology and Mineral Resources of the World Ocean (FSBI VNIIOkeangeologia) carries out a wide range of research in the fields of geology, engineering geology, geophysics, and geochemistry. The specialists of the institute perform studies using most-up-to-date equipment in several directions, including the study of the geology and mineral resources of the Arctic, Antarctic and the World Ocean. The geological and tectonic maps and atlases of the Eurasian sector of the Arctic shelf and adjacent deepwater zones of the Arctic Ocean have been compiled. This allow one to recognize the rift-related basins on the East Arctic shelf of Russia, and the conjunction areas of the Lomonosov, Gakkel, and Mendeleev oceanic ridges with the Eurasian continental margin. A comprehensive interpretation of geological and geophysical data has revealed features of the tectonics of the Amerasian Basin, which indicate that the evolution of the basin structures took place under conditions of continental rifting. One of the main scientific conclusions drawn at the preparation of the Submission of the Russian Federation in respect of the continental shelf boundary in the Arctic Ocean is the proof of the continental nature of the structures of the Central Arctic Rise Complex: the Lomonosov Ridge, Podvodnikov Basin, Alpha–Mendeleev Rise, Chukchi Basin, and Chukchi Borderland. This conclusion is confirmed by the characteristics of the main layers of the Earth’s crust in the above structures. A geodynamic model of the evolution of the Precambrian complexes of East Antarctica has been developed and the main tectonic provinces of Antarctica have been distinguished. A universal seismostratigraphic model of sedimentary basins has been developed for the marginal seas of East Antarctica. An important area of research in Antarctica was the study of the subglacial Lake Vostok. When studying the history of the formation of sulfide mineralization, it was found that the discharge of hydrothermal ore-bearing solutions most often occurs continuously, and only the intensity of the ore formation process changes with time. The possibility of formation of massive sulfide ore volumes additional to the main surface deposit due to metasomatic replacement of host igneous rocks has also been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Arctic Basin (Geology and Morphology), Ed. by V. D. Kaminsky (VNIIOeangeologiy, St. Petersburg, 2017) [in Russian].

  2. V. V. Butsenko, V. A. Poselov, S. M. Zholondz, and O. E. Smirnov, “Seismic attributes of basement in Podvodnikov Basin,” Dokl. Earth Sci. 488 (2), 1182–1185 (2019).

    Article  ADS  CAS  Google Scholar 

  3. V. A. Vernikovsky, Geodynamic Evolution of the Taimyr Fold Area (NITs OIGGM SO RAN, Novosibirsk, 1996) [in Russian].

  4. R. M. Demenitskaya and Yu. G. Kiselev, “Features of the structure, morphology of the sedimentary cover of the central part of the Lomonosov Ridge according to seismic studies,” Geofiz. Metody Razvedki Arktike, No. 5, 33–46 (1968).

    Google Scholar 

  5. A. G. Zinchenko and Yu. G. Firsov, “Geomorphology of the Arctic Ocean in the context of the United Nations Convention on the Law of the Sea 1982,” Vestn. GUM RF im. Admirala S. O. Makarova 50 (4), 734–751 (2018).

    Google Scholar 

  6. A. F. Morozov, O. V. Petrov, S. P. Shokalsky, S. N. Kashubin, A. A. Kremenetsky, M. Yu. Shkatov, V. D. Kaminsky, E. A. Gusev, G. E. Grikurov, P. V. Rekant, S. S. Shevchenko, S. A. Sergeev, and V. V. Shatov, “New geological data, confirming the continental origin of the Central Arctic rises,” Regional. Geol. Metallogen., No. 53, 34–55, 2013.

  7. A. L. Piskarev, G. P. Avetisov, A. A. Kireev, G. S. Kazanin, V. A. Poselov, V. A. Savin, O. E. Smirnov, and D. V. Elkina, “Structure of the Laptev Sea Shelf–Eurasian Basin transition zone (Arctic Ocean),” Geotectonics, No. 6, 589–608 (2018).

    Article  ADS  Google Scholar 

  8. V. A. Poselov, V. V. Butsenko, V. D. Kaminsky, and S. M. Zholondz, “Border of the continental margin of the Central Arctic Uplifts in Amundsen Basin in Siberia,” Dokl. Earth Sci. 493 (1), 539–543 (2020).

    Article  ADS  CAS  Google Scholar 

  9. V. A. Poselov, V. V. Butsenko, S. M. Zholondz, and A. A. Kireev, “Extension structures in the Central Arctic submarine elevations complex,” Russ. Geol. Geophys. 60 (1), 1–13 (2019).

    Article  ADS  Google Scholar 

  10. V. A. Poselov, V. V. Verba, S. M. Zholondz, and V. V. Butsenko, “Rises of the Amerasia Basin, Arctic Ocean and possible equivalents in the Atlantic Ocean,” Oceanology 59, 732–746 (2019).

    Article  ADS  Google Scholar 

  11. M. G. Ravich and E. N. Kamenev, The Crystalline Basement of the Antarctic Platform (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

  12. P. V. Rekant, O. V. Petrov, S. N. Kashubin, A. V. Rybalka, I. Yu. Vinokurov, and E. A. Gusev, “History of formation of the sedimentary cover of the Arctic basin: Multichannel seismic approach,” Regional. Geol. Metallogen., No. 64, 11–27 (2015).

  13. Yu. G. Firsov, “Seabed relief mapping problems on the Russian Bathymetric Chart of the Arctic Ocean,” Vestn. GUMRF im. Admirala S. O. Makarova 57 (5), 880–892 (2019a).

    Google Scholar 

  14. Yu. G. Firsov, “Special navigational support and accuracy of bathymetric surveys for deep-sea marine geological investigations,” Vestn. GUMRF im. Admirala S. O. Makarova 58 (6), 1070–1087 (2019b).

    Google Scholar 

  15. G. A. Cherkashev, “Morphology and internal structure of hydrothermal ore bodies formed in various geological settings of the World Ocean,” Oceanology 61 (2), 295–306 (2021).

    Google Scholar 

  16. A. A. Chernykh, Deep structure and tectonics of the continent-ocean transition zone in the Laptev Sea by geophysical data (GI RAN, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  17. J. Backman, M. Jakobsson, M. Frank, F. Sangiorgi, H. Brinkhuis, C. Stickley, M. O’Regan, R. Lovlie, H. Palike, D. Spofforth, J. Gattacecca, K. Moran, J. King, and C. Heil, “Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge,” Paleoceanogr. Paleoclimatol. 23 (1) (2008).

  18. A. Chernykh, V. Glebovsky, M. Zykov, et al., “New insights into tectonics and evolution of the Amerasia Basin,” J. Geodynam. 119, 167–182 (2018).

    Article  ADS  Google Scholar 

  19. B. Dorschel1, L. Hehemann, S. Viquerat, F. Warnke, S. Dreutter, Y. S. Tenberge, D. Accetella, L. An, F. Barrios, E. Bazhenova, J. Black, F. Bohoyo, C. Davey, L. De Santis, C. Escutia, A. C. Fremand, P. T. Fretwell, J. A. Gales, J. Gao, L. Gasperini, J. S. Greenbaum, J. H. Jencks, K. Hogan, J. K. Hong, M. Jakobsson, L. Jensen, J. Kool, S. Larin, R. D. Larter, G. Leitchenkov, B. Loubrieu, K. Mackay, L. Mayer, R. Millan, M. Morlighem, F. Navidad, F. O. Nitsche, Y. Nogi, C. Pertuisot, A. L. Post, H. D. Pritchard, A. Purser, M. Rebesco, E. Rignot, J. L. Roberts, M. Rovere, R. Ryzhov, C. Sauli, T. Schmitt, A. Silvano, J. Smith, H. Snaith, A. J. Tate, K. Tinto, P. Vandenbossche, P. Weatherall, P. Wintersteller, C. Yang, T. Zhang, and J. E. Arndt, “The International Bathymetric Chart of the Southern Ocean Version 2.2 (IBCSO V2),” Sci. Data 9 (275), 1–13 (2021). https://doi.org/10.1038/s41597-022-01366-7

  20. S. S. Drachev, “Fold belts and sedimentary basins of the Eurasian Arctic,” Arktos 21 (2) (2016). https://doi.org/10.1007/s41063-015-0014-8

  21. A. Firstova, G. Cherkashov, T. Stepanova, A. Sukhanova, I. Poroshina, and V. Bel’tenev, “New data for the internal structure of ultramafic hosted seafloor massive sulfides (SMS) deposits: Case study of the Semenov-5 hydrothermal field (13°31′ N, MAR),” Minerals 12 (12), 1593 (2022). https://doi.org/10.3390/min12121593

    Article  ADS  CAS  Google Scholar 

  22. F. Florindo, M. Siegert, L. DeSantis, and T. Naish, Antarctic Climate Evolution, 2nd ed. (Elsevier, NY, USA, 2021).

    Google Scholar 

  23. A. C. Frémand, P. Fretwell, J. Bodart, H. D. Pritchard, A. Aitken, J. L. Bamber, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, K. Christianson, H. Conway, H. F. J. Corr, X. Cui, D. Damaske, V. Damm, R. Drews, G. Eagles, O. Eisen, H. Eisermann, F. Ferraccioli, E. Field, R. Forsberg, S. Franke, S. Fujita, Y. Gim, V. Goel, S. P. Gogineni, J. Greenbaum, B. Hills, R. C. A. Hindmarsh, P. Holmlund, N. Holschuh, J. W. Holt, A. Humbert, R. W. Jacobel, D. Jansen, A. Jenkins, W. Jokat, T. Jordan, E. King, J. Kohler, W. Krabill, K. Langley, J. Lee, G. Leitchenkov, C. Leuschen, B. Luyendyk, J. McGregor, E. McKie, K. Matsuoka, M. Morlinghem, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, J. Paden, F. Pattyn, S. V. Popov, M. Riger-Kusk, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, A. Ruppel, D. M. Schroeder, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, I. Tabacco, K. Tinto, S. Urbini, D. Vaughan, B. C. Welch, D. S. Wilson, D. A. Young, and A. Zirizzotti, “Antarctic bedmap data: FAIR sharing of 60 years of ice bed, surface and thickness data,” Earth Syst. Sci. 15 (7), 2695‒2710 (2023). https://doi.org/10.5194/essd-2022-355

    Article  ADS  Google Scholar 

  24. L. Geoffro, E. Burov, and P. Werner, “Volcanic passive margins: another way to break up continents,” Sci. Reports 5 (14828), (2015).

  25. A. V. Golynsky, F. Ferraccioli, J. K. Hong, D. A. Golynsky, R. R. B. von Frese, D. A. Young, D. Blankenship, J. Holt, S. Ivanov, A. V. Kiselev, V. N. Masolov, G. Eagles, K. Gohk, W. Jokat, D. Damaske, C. Finn, A. Aitken, R. E. Bell, E. Armadillo, T. A. Jordan, J. S. Greenbaum, E. Bozzo, G. Ganeva, V. Forsberg, M. Ghidella, J. Galindo-Zaldivar, F. Bohoyo, Y. M. Martos, Y. Nogi, E. Quartini, H. R. Kim, and J. L. Roberts, “New magnetic anomaly map of the Antarctic,” Geophys. Res. Lett. 13, 6437‒6449 (2018). https://doi.org/10.1029/2018GL078153

    Article  ADS  Google Scholar 

  26. A. Grantz, P. E. Hart, and V. A. Childers, “Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean,” Geol. Soc. Mem. 35, 771–799 (2011).

    Article  Google Scholar 

  27. G. E. Grikurov and G. Leychenkov, Tectonic Map of Antarctica (Scale 1 : 10 M) and Explanatory Notes, 2nd ed. (Comm. Geol. Map of the World (CGMW), Paris, France, 2023.

  28. E. Gusev, P. Rekant, V. Kaminsky, A. Krylov, A. Morozov, S. Shokalsky, and S. Kashubin, “Morphology of seamounts at the Mendeleev Rise, Arctic Ocean,” Polar Res., 36 (1), 1298901 (2017).

    Article  Google Scholar 

  29. C. Knudsen, J. R. Hopper, P. R. Bierman, M. Bjerager, T. Funck, P. F. Green, J. R. Ineson, P. Japsen, C. Marcussen, S. C. Sherlock, and T. B. Thomsen, “Samples from the Lomonosov Ridge place new constraints on the geological evolution of the Arctic Ocean,” Spec. Publ.—Geol. Soc. London 460, 397–418 (2018).

    Article  ADS  Google Scholar 

  30. K. Kuksa, G. Cherkashov, A. Bich, F. Maksimov, V. Kuznetsov, V. Bel’tenev, A. Firstova, and S. F. Boltramovich, “Temporal evolution of the Pobeda hydrothermal site (MAR): Utility of proximal sediment cores,” Chem. Geol. 628, 121477 (2023).

    Article  ADS  CAS  Google Scholar 

  31. G. Leitchenkov, A. Antonov, P. Luneov, and V. Lipenkov, “Geology and environments of subglacial Lake Vostok,” Phil. Trans. Royal. Soc. Ser. A 374, 20140303 (2016).

    ADS  Google Scholar 

  32. E. V. Mikhalsky and G. L. Leitchenkov, Geological Map of MacRobertson Land, Princess Elizabeth Land, and Prydz Bay (East Antarctica) in scale 1 : 1 000 000 (Map Sheet and Explanatory Notes) (VNIIOkeangeologia, St. Petersburg, 2018) [in Russian].

  33. Mineragenic Map of the World Ocean, Ed. by S. I. Andreev (VNIIOkeangeologia, St.-Petersburg, 2015) [in Russian].

  34. A. M. Nikishin, E. A. Rodina, K. F. Startseva, et al., “Alpha-Mendeleev Rise, Arctic Ocean: A double volcanic passive margin,” Gondwana Res. 120, 85‒110 (2023).

    Article  ADS  Google Scholar 

  35. T. M. O’Brien, E. L. Miller, J. P. Benowitz, K. E. Meisling, and T. A. Dumitru, “Dredge samples from the Chukchi Borderland: Implications for paleogeographic reconstruction and tectonic evolution of the Amerasia Basin of the Arctic,” Am. J. Sci. 316, 873‒924 (2016).

    Article  ADS  Google Scholar 

  36. S. Polteau, W. H. Hendriks Bart, S. Planke, et al., “The Early Cretaceous Barents Sea sill complex: Distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 441, 83‒95 (2015).

    Article  Google Scholar 

  37. P. Rekant, N. Sobolev, A. Portnov, B. Belyatsky, G. Dipre, A. Pakhalko, V. Kabankov, and I. Andreeva “Basement segmentation and tectonic structure of the Lomonosov Ridge, arctic Ocean: Insights from bedrock geochronology,” J. Geodynam. 128, 38‒54 (2019).

    Article  ADS  Google Scholar 

  38. I. Sauermilch, E. Weigelt, and W. Jokat, “Pre-rift sedimentation of the Lomonosov Ridge, Arctic Ocean at 84° N—A correlation to the complex geologic evolution of the conjugated Kara Sea,” J. Geodynam. 118, 49‒54 (2018).

    Article  ADS  Google Scholar 

  39. M. Scheinert, F. Ferraccioli, J. Schwabe, R. Bell, M. Studinger, D. Damaske, W. Jokat, N. Aleshkova, T. Jordan, G. Leitchenkov, D. D. Blankenship, T. M. Damiani, D. Young, J. R. Cochran, and T. D. Richter, “New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica,” Geophys. Res. Lett. 43, 600–610 (2016). https://doi.org/10.1002/2015GL067439

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  40. S. Skolotnev, G. Aleksandrova, T. Isakova, T. Tolmacheva, A. Kurilenko, E. Raevskaya, S. Rozhnov, E. Petrov, and A. Korniychuk, “Fossils from seabed bedrocks: Implications for the nature of the acoustic basement of the Mendeleev Rise (Arctic Ocean),” Mar. Geol. 407, 148‒163 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the reviewers, Academician K.E. Degtyarev (Geological Institute of the Russian Academy of Sciences, Moscow, Russia) and Doctor of Geological and Mineralogical Sciences A.A. Peyve (Geological Institute of the Russian Academy of Sciences, Moscow, Russia) for useful comments. The authors extend their sincere gratitude to editor M.N. Shoupletsova (Geological Institute of the Russian Academy of Sciences, Moscow, Russia) for thorough editing.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Shumskiy.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Voroshchuk

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumskiy, B.V., Gusev, E.A., Leitchenkov, G.L. et al. The Geology of the World Ocean (Arctic and Antarctic): Achievements and New Research. Geotecton. 57 (Suppl 1), S1–S12 (2023). https://doi.org/10.1134/S0016852123070129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852123070129

Keywords:

Navigation