Skip to main content
Log in

Latent Tectonics of the Central Russian Deformation Belt of the East European Platform

  • Published:
Geotectonics Aims and scope

Abstract

The article considers the features of the tectonics of the Central Russian deformation belt located in the central part of the East European Platform. The belt is traced in a wide (up to 350 km) strip ENE for more than 1000 km. In studying this structure, remote and structural analysis methods were used. Based on the available data, analysis of the potential fields and interpretations of digital elevation maps, a set of tectonic diagrams of the Early Precambrian basement, protoplatform, and plate cover has been compiled. The features of the various tectonic floors of the platform are considered, and structures at different deep levels are compared. The analysis showed that the Central Russian belt is a long-lived structure, in which large tectonic zones are manifested, expressed in the modern relief surface and penetrating the basement and cover complexes. In the structure of the belt at different deep levels, combined elements of the tectonics of shear zones and transcrustal detachments are manifested, which developed in various dynamic settings: (i) collisional events at the end of the Paleoproterozoic (Svecofennian stage); (ii) transtensional rifting in the Riphean and Early Vendian (Early Baikal stage); (iii) development of inversion structures during formation of the Moscow syneclise basin (Caledonian–Early Hercynian stages); (iv) shearing in transpression and transtension conditions (Late Hercynian–modern stages). Deformations of sediments in the cover of the Central Russian belt are usually represented in latent form (dispersed low-amplitude faults), but there are also zones with a fault-fold structures. A detailed study of the Central Russian deformation zone, which forms the northern part of the belt of the same name, showed that it is characterized by elements of typical shear-zone tectonics. The structural and kinematic parageneses of the zone and models of its structure are considered. The structural and dynamic signs favorable for the accumulation of the hydrocarbons are noted. Since the Late Riphean and up to modern times, the Central Russian zone has experienced more than nine mobility pulses and at least six kinematic inversions. For the Late Hercynian, Alpine, and modern stages, three deformation stages of have been established, mainly associated with sinistral transpression, and local short-period dextral transtension and sinistral simple shearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. R. E. Aizberg and R. G. Garetsky, “Listric tectonics of platforms,” Dokl. Ross. Akad. Nauk 346 (4), 501–504 (1996).

    Google Scholar 

  2. N. V. Aksamentova, Magmatism and Paleogeodynamics of the Osnitsk–Mikashevichi Volcano-Plutonic Belt (IGN NAN Belarusi, Minsk, 2002) [in Russian].

    Google Scholar 

  3. R. N. Valeev, Riphean and Phanerozoic Tectonics and Minerageny of the East European Platform (Nedra, Moscow, 1981) [in Russian].

    Google Scholar 

  4. V. R.Verbitskii, I. V. Verbitskii, O. V. Vasil’eva, V. V. Savanin, et al., The 1 : 1 000 000 State Geological Map of the Russian Federation (3rd ed.). Ser. Central European. Sheets O-35-Pskov, (N-35), O-36-Sankt-Peterburg. Explanatory Note (Vseross. Nauchno-Issled. Geol. Inst., St. Petersburg, 2012) [in Russian].

  5. T. I. Vladimirova, I. N. Kapustin, V. P. Orlov, and D. L. Fedorov, Explanatory Note for the 1 : 2 500 000 Hypsometric Map of the Crystalline Basement Surface in Central and Northern Parts of the East European Platform (Vseross. Nauchno-Issled. Geol. Inst., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  6. R. G. Garetsky, “Features of tectonics and geodynamics of the East European Platform,” Litasfera, No. 2(27), 3–13 (2007).

    Google Scholar 

  7. R. G. Garetsky, G. I. Karatayev, V. N. Astapenko, and I. V. Dankevich, “Geological and geophysical characteristics of the Polotsk–Kurzem Fault Belt,” Litasfera, No. 2(21), 10–27 (2004) [in Russian].

    Google Scholar 

  8. R. G. Garetsky and M. A. Nagorny, “Main stages in evolution of the Moscow Syneclise,” Litasfera, No. 2, 14–24 (2006) [in Russian].

    Google Scholar 

  9. M. V. Gzovskii, Foundations of Tectonophysics (Nauka, Moscow, 1975).

    Google Scholar 

  10. The 1 : 2 500 000 Hypsometric Map of the Crystalline Basement Surface in Central and Northern Parts of the East European Platform, Ed. by V. P. Orlov and D. L. Fedorov (Vseross. Nauchno-Issled. Geol. Inst., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  11. Deep Structure, Evolution, and Mineral Resources of the Early Precambrian Basement of the East European Platform: Interpretation of Minerals on the 1-EV, 4V, and TATSEIS Profiles, Ed. by A. F. Morozov (GEOKART-GEOS, Moscow, 2010. Vol. 2) [in Russian].

    Google Scholar 

  12. The Deep Drilling in Puchezh-Katunkskaya Impact Structure, Ed. by V.L. Masaitis and L. A. Pevzner (Vseross. Nauchno-Issled. Geol. Inst., St. Petersburg, 1999) [in Russian].

    Google Scholar 

  13. The 1 : 1 000 000 State Geological Map of the Russian Federation (New Ser.). Sheet N-37 (38) (Moscow). Explanatory Note (Vseross. Nauchno-Issled. Geol. Inst., St. Petersburg, 1999) [in Russian].

  14. The 1 : 1 000 000 State Geological Map of the Russian Federation (New Ser.). Sheet O-37, (38) (Nizhny Novgorod). Explanatory Note (Vseross. Nauchno-Issled. Geol. Inst., St. Petersburg, 2000) [in Russian].

  15. The 1 : 1 000 000 State Geological Map of the Russian Federation (3rd ed.). Sheet O-37 (Yaroslavl). Explanatory Note (Vseross. Nauchno-Issled. Geol. Inst., St. Petersburg, 2015) [in Russian].

  16. S. Yu. Kolodyazhnyi, “Long-lived structural ensembles of the East European Platform. Article 1. The basement structure,” Izv. VUZov. Ser. Geol. Razved., No. 2, 5–13 (2018).

  17. S. Yu. Kolodyazhnyi and A. I. Nekrasov, “Structural and dynamic distribution patterns of oil fields in the central part of the Volga-Ural anteclise,” Geodynam. Tectonophys., 1 (1), 123–140 (2020).

    Article  Google Scholar 

  18. S. Yu. Kolodyazhnyi, E. N. Terekhov, and A. S. Baluev, “Structural–kinematic parageneses and dynamic evolution model of the Baltic–Mezen shear zone in the Phanerozoic, the northwestern part of the East European Platform,” Geotectonics 54 (2), 188-211 (2020).

    Article  Google Scholar 

  19. M. L. Kopp, “Horizontal components of recent movements in platform areas of the Southeastern Europe,” in Trans. Geol. Inst. Russ. Acad. Sci. Vol. 552, Ed. by Yu. G. Leonov (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  20. N. V. Koronovskii, G. N. Gogonenko, M. A. Goncharov, A. I. Timurziev, and N. S. Frolova, “Role of shear along horizontal plane in the formation of helicoidal structures,” Geotectonics 43 (5), 379–391 (2009).

    Article  Google Scholar 

  21. S. L. Kostyuchenko, A. V. Egorkin, and L. N. Solodilov, “Precambrian tectonic model of the Moscow Syneclise based on complex regional studies,” Razved. Okhrana Nedr, No. 5, 8–12 (1995).

    Google Scholar 

  22. R. B. Krapivner, Rootless Neotectonic Structural Elements (Nedra, Moscow, 1986) [in Russian].

    Google Scholar 

  23. A. N. Kuz’min, V. P. Kirikov, N. V. Luk’yanova, A. V. Maksimov, et al., The 1 : 1 000 000 State Geological Map of the Russian Federation (3rd ed.). Ser. Central European. Sheet N-37 (Moscow). Explanatory Note (Vseross. Nauchno-Issled. Geol. Inst., St. Petersburg, 2015) [in Russian].

  24. Yu. A. Lavrushin, Structure and Formation of Ground Moraines of Continental Glaciations (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  25. M. G. Leonov, Yu. A. Morozov, Yu. P. Stefanov, and R. A. Bakeev, “Zones of concentrated deformation (flower structures): field observations and modeling data,” Geodynam. Tectonophys., 9 (3), 693–720 (2018).

    Article  Google Scholar 

  26. M. G. Leonov, M. L. Kopp, S. Yu. Kolodyazhnyi, D. S. Zykov, A. V. Ryazantsev, K. E. Degtyarev, and M. L. Bazhenov, “Lateral tectonic flows in the lithosphere of the Earth,” in Trans. Geol. Inst. Russ. Acad. Sci. Vol. 604, Ed. by M. G. Leonov (GEOS, Moscow, 2013) [in Russian].

    Google Scholar 

  27. A. V. Luk’yanov, Structural Occurrences of Horizontal Movements in the Earth’s Crust (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  28. E. E. Milanovskii, “Ancient platforms and metaplatform areas,” in Geology of the USSR. Pt. 1 (Mosk. Gos. Univ., Moscow, 1987).

    Google Scholar 

  29. Yu. A. Morozov, “Cyclicity of kinematic inversions in mobile belts in the light of lunar-terrestrial interaction,” Geotectonics 48, 17–42 (2004).

    Google Scholar 

  30. A. M. Nikishin and K. F. Startseva, “The example of volumetrical structure of shift zones according to 3D seismic data interpretation,” Geol. Nefti Gaza, No. 4, 29–33 (2015).

    Google Scholar 

  31. Faults in the Earth’s Crust in Belarus, Ed. by R. E. Aizberg (Krasiko-Print, Minsk, 2007) [in Russian].

    Google Scholar 

  32. S. I. Selemenev, Extended Abstract of Candidate Dissertation in Geology and Mineralogy (Mosk. Gos. Univ, Moscow, 2006).

  33. K. Zh. Seminskii, Internal Structure of the Continental Fault Zones: Tectonophysical Aspect, Ed. by S. I. Sherman (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2003) [in Russian].

    Google Scholar 

  34. L. A. Sim, Neotectonic stress fields in the East European Platform,” Litasfera, No. 5, 100–107 (1996) [in Russian].

    Google Scholar 

  35. L. A. Sim and A. V. Marinin, “Methods of field tectonophysics for identification of paleostresses,” in Modern Tectonophysics. Methods and Results, Ed. by Yu. L. Rebetsky (Inst. Phiz. Zemli, Moscow, 2015. Vol. 2), pp. 47–76 [in Russian].

    Google Scholar 

  36. V. Ya. Sokolov, “Geological structure and petroleum potential of the Tver oblast,” Geol. Nefti Gaza, 9 (10), 36–42 (1999).

    Google Scholar 

  37. A. I. Timurziev, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (Mosk. Gos. Univ., Moscow, 2009).

  38. M. A. Ustinova, Extended Abstract of Candidate Dissertation in Geology and Mineralogy (Mosk. Gos. Univ, Moscow, 2001).

  39. D. L. Fedorov, S. L. Kostyuchenko, and L. N. Solodilov, “The Central Russian aulacogen: Tectonic transfer in the system of Caspian and Barents Sea petroliferous basins,” Otech. Geol., No. 2, 50–61 (1996).

  40. T. N. Kheraskova, N. K. Andreeva, A. K. Vorontsov, and N. A. Kagramanyan, “Evolution of the Moscow sedimentary basin in the early Paleozoic,” Lithol. Miner. Resour. 40, 172–191 (2005).

    Article  Google Scholar 

  41. T. N. Kheraskova, Yu. A. Volozh, N. G. Zamozhnyaya, S. A. Kaplan, and A. K. Suleimanov, “Structure and history of the western East European Platform in the Riphean–Paleozoic: EV-1 geotraverse data (Lodeinoe Pole–Voronezh),” Litosfera, No. 2, 65–94 (2006).

    Google Scholar 

  42. V. A. Tsyganov, “Geologo-tectonic structure of the upper part of crystalline basement in the central part of the East European Platform and its reflection in the structure of the upper part of the sedimentary cover,” Georesursy 4 (12), 38–45 (2002).

    Google Scholar 

  43. N. P. Chamov, The Structure and Development of the Mid-Russian−White Sea Province in the Neoproterozoic, Ed. by Yu. G. Leonov (GEOS, Moscow, 2016) [in Russian].

    Google Scholar 

  44. S. I. Sherman, S. A. Bornyakov, and V. Yu. Buddo, The Areas Dynamically Controlled by the Faults: The Results of Modeling, Ed. by B. M. Chikov (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  45. F. N. Yudakhin, Yu. K. Shchukin, and V. I. Makarov, Deep Structure and Modern Geodynamic Processes in the Lithosphere of the East European Platform, Ed. by N. P. Laverov (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2003) [in Russian].

    Google Scholar 

  46. S. V. Bogdanova, “Segments of the East European Craton,” in EUROPROBE in Jablonna 1991, Ed. by D. G. Gee and M. Beckholmen (Inst. Geophys. Pol. Acad. Sci., Warszawa, 1993), pp. 33–38.

    Google Scholar 

  47. S. V. Bogdanova, I. K. Pashkevich, R. Gorbatchev, and M. I. Orlyuk, “Riphean rifting and major Paleoproterozoic crustal boundaries in the basement of the East European Craton: Geology and geophysics,” Tectonophysics 268, 1–21 (1996).

    Article  Google Scholar 

  48. S. Hanmer and C. Passchier, Shear-Sense Indicators: A Review (Geol. Surv. Canada, Ottawa, 1991. Pap. 90-17).

  49. S. L. Kostyuchenko, A. V. Egorkin, and L. N. Solodilov, “Structure and genetic mechanisms of the Precambrian rifts of the East-European Platform in Russia by integrated study of seismic, gravity, and magnetic data,” Tectonophysics 313, 9–28 (1999).

    Article  Google Scholar 

  50. M. Ligi, E. Bonatti, L. Gasperini, and A. N. B. Poliakov, “Oceanic broad multifault transform plate boundaries,” Geology 30, 11–14 (2002).

    Article  Google Scholar 

  51. P. Mann, “Global catalogue, classification and tectonic origins of restraining- and releasing bends on active and ancient strike-slip fault systems,” Spec. Publ.—Geol. Soc. London 290 (1), 13–142 (2007).

    Google Scholar 

  52. R. A. Marrett and R. W. Allmendinger, “Kinematic analysis of fault-slip data,” J. Struct. Geol. 12, 973–986 (1990).

    Article  Google Scholar 

  53. M. A. Naylor and G. Mandle, and C. H. K. Sijpenstein, “Fault geometries basement induced wrench faulting under different initial stress states,” J. Struct. Geol. 8 (7), 737–752 (1986).

    Article  Google Scholar 

  54. A. M. Nikishin, P. A. Ziegler, S. Cloething, R. A. Stephenson, A. V. Furne, P. A. Fokin, A. V. Ershov, S. N. Bolotov, M. V. Koraev, A. S. Alekseev, I. Gorbachev, E. V. Shipilov, A. Lankrejer, and I. V. Shalimov, “Late Precambrian to Triassic history of the east European Craton: Dynamics of sedimentary basin evolution,” Tectonophysics 268, 23– 63 (1996).

    Article  Google Scholar 

  55. J. G. Ramsay, “Shear zone geometry: A review,” J. Struct. Geol. 2 (1–2), 83–99 (1980).

    Article  Google Scholar 

  56. J. G. Ramsay and M. I. Huber, “The techniques of modern structural geology, in Folds and Fractures (Acad. Press., London,1987. Vol. 2).

    Google Scholar 

  57. S. G. Skolotnev, A. Sanfilippo, A. A. Peyve, et al., “Large-scale structure of the Doldrums multi-fault transform system (7°–8° N equatorial atlantic): Preliminary results from the 45th expedition of the R/V A.N. Strakhov,” Ofioliti 45 (1), 25–41 (2020).

    Google Scholar 

  58. Strike-Slip Deformation, Basin Formation, and Sedimentation, Ed. by K. T. Biddle and N. Christie-Blick (Soc. Econ. Paleontol. Miner. Spec. Publ., 1985. Vol. 37).

    Google Scholar 

  59. A. G. Sylvester, “Strike-slip faults,” GSA Bull. 100, 1666–1703 (1988).

    Article  Google Scholar 

  60. B. Wernicke, “Uniform sense normal simple shear of the continental lithosphere,” Can. J. Earth Sci. 22, 789–795 (1985).

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Basement for Basic Research (project nos. 18-05-00485, 18-05-00733) and a state budget topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Kolodyazhny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolodyazhny, S.Y., Poleshchuk, A.V. & Zykov, D.S. Latent Tectonics of the Central Russian Deformation Belt of the East European Platform. Geotecton. 55, 473–501 (2021). https://doi.org/10.1134/S0016852121040099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852121040099

Keywords:

Navigation