Skip to main content
Log in

Analysis of the Maximum Principal Stress Directions in the Himalayas: A Remote Sensing Based Approach

  • Published:
Geotectonics Aims and scope

Abstract

The tectonic activity in the Himalayan region is reflected through major and minor lineaments associated with the major fault and thrust systems. In the present study, we used multi-sensor optical and microwave radar remote sensing images and topographic elevation data for extraction of lineaments. Image enhancement of remote sensing data and relief shading of topographic elevation data were performed for highlighting the lineaments. Eight structural domains were selected in and around the major thrusts and strike slip faults in north-western and central Himalayan regions. From the angular distribution of lineaments, the vector mean orientations of major and minor lineaments were determined for each of the structural domains. Considering areal coverage of individual litho-units, area-weighted internal friction angles were obtained for eight structural domains. Finally, based on the Mohr-Coulomb failure criteria, the directions of maximum principal stress (s1) were estimated from the orientations of shear fractures. The study shows a good agreement between minor lineaments based maximum principal stress directions and GPS based plate motion vectors. But, we found a significant deviation between major and minor lineaments based principal stress directions and plate motion vectors for some of the structural domains those were affected by post-thrusting strike-slip fault tectonics. This is perhaps due to the fact that major lineaments give rise to the maximum principal stress direction of older collision and post-collision phases whereas minor lineaments represent essentially recent to sub-recent active tectonics phase. Further, subtle local deviations in the principal stress directions may be attributed to litho-tectonic heterogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. É. Argand, “La tectonique de l’Asie,” Proceedings of the XIII International Geological Congress, Brussels, Belgium 1924, Vol. 1, No. 5, pp. 171‒372.

  2. L. E. Arlegui and M. A. Soriano, “Characterizing lineaments from satellite images and field studies in the central Ebro basin (NE Spain),” Int. J. Remote Sens. 19, 3169–3185 (1998).

    Article  Google Scholar 

  3. J. P. Avouac, “Mountain building, erosion, and the seismic cycle in the Nepal Himalaya,” Adv. Geophys. 46, 1‒80 (2003).

    Article  Google Scholar 

  4. P. Banerjee and R. Burgmann, “Convergence across the northwest Himalaya from GPS measurements,” Geophys. Res. Lett. 29, 1652 (2002).

    Article  Google Scholar 

  5. R. Bilham, V.K. Gaur, P. Molnar, “Himalayan seismic hazard,” Science 293, 1442‒1444 (2001).

    Article  Google Scholar 

  6. S. Dasgupta, P. Pande, D. Ganguly, Z. Iqbal, K. Sanyal, N. V. Venkatraman, B. Sural, L. Harendranath, K. Mazumdar, S. Sanyal, A. Roy, L. K. Das, P. S. Misra, and H. Gupta, Seismotectonic Atlas of India and Its Environs, Scale 1 : 1 000 000, No. 59 of Geol. Surv. India, Spec. Publ., Ed. by P. L. Narula, S. K. Acharyya, and J. Banerjee (Geol. Surv. India, 2000).

  7. S. A. Drury, S. P. Kelley, S. M. Berhe, R. E. Collier, and M. Abraham, “Himalayan seismic hazard”, Science 293, 1441–1444 (1994).

    Google Scholar 

  8. S. A. Drury, S. P. Kelley, S. M. Berhe, R. E. Collier, and M. Abraham, “Himalayan seismic hazard,” Science 293, 1441–1444 (1994).

    Google Scholar 

  9. J. Fagbohun, B. Adeoti, and O. O. Aladejana, “Litho-structural analysis of eastern part of Ilesha schist belt, Southwestern Nigeria,” J. Afr. Earth Sci. 133, 123‒137 (2017).

    Article  Google Scholar 

  10. S. C. N. Fils, C. H. B. Mongo, D. G. Nkouathio, M. E. Mimba, J. Etouna, P. N. Nouck, and B. Nyeck, “Radarsat-1 image processing for regional-scale geological mapping with mining vocation under dense vegetation and equatorial climate environment, Southwestern Cameroon,” Egypt. J. Remote Sens. Space Sci. 21, 43–54 (2018).

    Google Scholar 

  11. W. Gan, P. Zhang, Z. Shen, Z. Niu, M. Wang, Y. Wan, D. Zhou, and J. Cheng, “Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements,” J. Geophys. Res. 112, B08416 (2007).

    Google Scholar 

  12. Geological Map of India, Scale 1 : 2 000 000, 7th ed. (Geol. Surv. India, 1998).

  13. R. Gloaguen, P. R. Marpu, and I. Niemeyer, “Automatic extraction of faults and fractal analysis from remote sensing data”, Nonlinear Process. Geophys. 14, 131‒138 (2007).

    Article  Google Scholar 

  14. L. Han, Z. Liu, Y. Ning, and Z. Zhao, “Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area,” Advanc. Space Res. 62, 2480–2493 (2018).

    Article  Google Scholar 

  15. A. Haq, S. K. Pandita, Y. Singh, G. M. Bhat, S. J. Pandey, A. Singha, M. Verma, and B. K. Bansal, “Evidence of active tectonic deformation in Kishtwar Area, Jammu and Kashmir, Northwest Himalaya, India”, J. Geol. Soc. India 93, 331–342, (2019).

    Article  Google Scholar 

  16. J. L. Hardebeck and A. J. Michael, “Stress orientations at intermediate angles to the San Andreas Fault, California,” J. Geophys. Res.: Solid Earth 109, Art. No. B11303 (2004). https://doi.org/10.1029/2004JB003239

    Article  Google Scholar 

  17. A. Heim and A. Gansser, Central Himalayas: Geological Observations of the Swiss Expedition of 1936, Vol. 73 of Denschr. Schweizer. Naturforsch. Ges. (1939).

  18. S. Jade, M. Mukul, V. K. Gaur, K. Kumar, T. S. Shrungeshwar, G. S. Satyal, K. D. Rakesh, J. Saigeetha, M. B. Ananda, K. P. Dileep, and B. Souvik, “Contemporary deformation in the Kashmir-Himachal, Garhwal and Kumaon Himalaya; significant insights from 1995–2008 GPS time series,” J. Geod. 88, 539–557 (2014).

    Article  Google Scholar 

  19. G. Jordan and B. Schott, “Application of wavelet analysis to the study of spatial pattern of morphotectonic lineaments in digital terrain models: A case study”, Remote Sens. Environ. 94, 31‒38 (2005).

    Article  Google Scholar 

  20. F. Jouanne, J. L. Mugneir, J. F. Gamond, P. L. Fort, M. R. Pandey, L. Bollinger, M. Flouzat, and J. P. Avouac, “Current shortening across the Himalayas of Nepal,” Geophys. J. Int. 157, 1–14 (2004).

    Article  Google Scholar 

  21. N. Kanna, S. Gupta, and K. S. Prakasam, “Micro-seismicity and seismotectonic study in Western Himalaya–Ladakh Karakoram using local broadband seismic data,” Tectonophysics 726, 100–109 (2018).

    Article  Google Scholar 

  22. A. Karnieli, A. Meisels, L. Fisher, and Y. Arkin, “Automatic extraction and evaluation of geological linear features from digital remote sensing data using a Hough transform,” Photogramm. Eng. Remote Sens. 62, 525–531 (1996).

    Google Scholar 

  23. K. Koike, S. Nagano, and M. Ohmi, “Lineament analysis of satellite images using a Segment Tracing Algorithm (STA),” Comput. Geosci. 21, 1091‒1104 (1995).

    Article  Google Scholar 

  24. J. Lavé and J. P. Avouac, “Active folding of fluvial terraces across the Siwalik Hills, Himalayas of central Nepal”, J. Geophys. Res.: Solid Earth 105, 5735– 5770 (2000).

    Article  Google Scholar 

  25. S. B. Mabee, K. C. Hardcastle, and D. W. Wise, “A method of collecting and analyzing lineaments for regional-scale fractured bedrock aquifer studies,” Groundwater 32, 884–894 (1994).

    Article  Google Scholar 

  26. J. N. Malik and T. Nakata, “Active faults and related Late Quaternary deformation along the Northwestern Himalayan Frontal Zone, India,” Ann. Geophys. 46, 917‒936 (2003).

    Google Scholar 

  27. J. N. Malik, A. A. Shah, A. K. Sahoo, B. Puhan, C. Banerjee, D. P. Shinde, N. Juyal, A. K. Singhvi, and S. K. Rath, “Active fault, fault growth and segment linkage along the Janauri anticline (frontal foreland fold), NW Himalaya, India,” Tectonophysics 483, 327–343 (2010).

    Article  Google Scholar 

  28. U. Mallast, R. Gloaguen, R. S. Geyer, T. Rödiger, and C. Siebert, “Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data,” Hydrol. Earth Syst. Sci. 15, 2665–2678 (2011).

    Article  Google Scholar 

  29. J. Meixner, J. C. Grimmer, A. Becker, E. Schill, and T. Kohl, “Comparison of different digital elevation models and satellite imagery for lineament analysis: Implications for identification and spatial arrangement of fault zones in crystalline basement rocks of the southern Black Forest (Germany),” J. Struct. Geol. 108, 256–268 (2018).

    Article  Google Scholar 

  30. B. Mukhopadhyay, A. Acharyya, D. Bhattacharyya, S. Dasgupta, and P. Pande, “Seismotectonics at the terminal ends of the Himalayan Arc,” Geomatics, Nat. Haz. Risk 2, 159‒181 (2011).

    Google Scholar 

  31. B. Mukhopadhyay and S. Dasgupta, “Seismic hazard assessment of Kashmir and Kangra valley region, Western Himalaya, India,” Geomatics, Nat. Haz. Risk 6, 149–183 (2015).

    Google Scholar 

  32. T. Nakata and Y. Kumahara, “Active faulting across the Himalaya and its significance in the collision tectonics,” Active Fault Res. 22, 7‒16 (2002).

    Google Scholar 

  33. T. Nakata, K. Otsuki, and S. H. Khan, “Active faults, stress field, and plate motion along the Indo Eurasian plate boundary,” Tectonophysics 181, 83‒95 (1990).

    Article  Google Scholar 

  34. S. J. Pandey, G. M. Bhat, S. Puri, N. Raina, Y. Singh, S. K. Pandita, M. Verma, B. K. Bansal, and A. Sutar, “Seismotectonic study of Kishtwar region of Jammu Province using local broadband seismic data,” J. Seismol. 21, 525‒538 (2016).

    Article  Google Scholar 

  35. L. P. Paudel and K. Arita, “Tectonic and polymetamorphic history of the Lesser Himalaya in Central Nepal,” J. Asian Earth Sci. 18, 561‒584 (2000).

    Article  Google Scholar 

  36. R. J. Phillips, “Geological map of the Karakoram fault zone, Eastern Karakoram, Ladakh, NW Himalaya”, J. Maps 4 (1), 21‒37 (2008).

    Article  Google Scholar 

  37. P. M. Powers, R. J. Lillie, and R. S. Yeats, “Structure and shortening of the Kangra and Dehra Dun reentrants, Sub-Himalaya, India,” Geol. Soc. Am. Bull. 110, 1010–1027 (1998).

    Article  Google Scholar 

  38. C. Robinson, “Evidence against Quaternary slip on the northern Karakorum fault suggests kinematic reorganization at the western end of the Himalayan-Tibetan orogeny,” Earth Planet. Sci. Lett. 286, 158–170 (2009).

    Article  Google Scholar 

  39. P. K. Sahoo, S. Kumar, and R. P. Singh, “Neotectonic study of Ganga and Yamuna tear faults, NW Himalaya, using remote sensing and GIS,” Int. J. Remote Sens. 21, 499‒518 (2000).

    Article  Google Scholar 

  40. S. Sahoo and J. N. Malik, “Active fault topography along Kangra Valley Fault in the epicentral zone of 1905 Mw7.8 earthquake NW Himalaya, India,” Quat. Int. 462, 90‒108 (2017).

    Article  Google Scholar 

  41. M. P. Searle, R. F. Weinberg, and W. J. Dunlap, “Transpressional tectonics along the Karakoram fault zone, northern Ladakh: Constraints on Tibetan extrusion, continental transpressional and transtensional tectonics,” in Continental Transpressional and Transtensional Tectonics, Vol. 135 of Geol. Soc. London, Spec. Publ., Ed. by R. E. Holdsworth, R. A. Strachan, and J. F. Dewey (London, 1998), pp. 307‒326.

  42. R. P. Silver, M. A. Murphy, M. H. Taylor, J. Gosse, and T. Baltz, “Neotectonics of the Western Nepal Fault System: Implications for Himalayan strain partitioning,” Tectonics 34, 2494–2513 (2015).

    Article  Google Scholar 

  43. S. Solomon and W. Ghebreab, “Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea,” J. Afr. Earth Sci. 46, 371–378 (2006).

    Article  Google Scholar 

  44. R. Sorkhabi, “The Great Himalayan earthquakes,” Himalayan J. 62, Art. No. 5 (2006).

  45. V. L. Stevens and J. P. Avouac, “Millenary M W > 9.0 earthquakes required by geodetic strain in the Himalaya,” Geophys. Res. Lett. 43, 1118–1123 (2016).

    Article  Google Scholar 

  46. M. Taylor and A. Yin, “Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism,” Geosphere 5 (3), 199–214 (2009).

    Article  Google Scholar 

  47. V. C. Thakur, R. Jayangondaperumal, and V. Joevivek, “Seismotectonics of central and NW Himalaya: Plate boundary–wedge thrust earthquakes in thin- and thick-skinned tectonic framework,” in Crustal Architecture and Evolution of the Himalaya–Karakoram–Tibet Orogen, Vol. 481 of Geol. Soc. London, Spec. Publ., Ed. by R. Sharma, I. Villa, and S. Kumar (London, 2018), pp. 41‒63.

  48. J. Townend and M. D. Zoback, “Stress, strain, and mountain building in Central Japan”, J. Geophys. Res.: Solid Earth 111, Art. No. B03411 (2006). https://doi.org/10.1029/2005JB003759

    Article  Google Scholar 

  49. M. Verma and B. K. Bansal, “Active fault research in India: achievements and future perspective,” Geomatics, Nat. Haz. Risk 7, 65‒84 (2016).

    Google Scholar 

  50. J. Wang and P. J. Howarth, “Use of the Hough transform in automated lineament detection,” IEEE Trans. Geosci. Remote Sens. 28, 561‒566 (1990).

    Article  Google Scholar 

  51. W. L. Weerasekera, B. B. Mayadunna, I. P. Senanayake, and D. M. D. O. K. Dissanayake, “Integrated remote sensing and GIS in lineament mapping for groundwater exploration – a case study in Ambalantota, Sri Lanka,” SAITM Research Symposium on Engineering Advancements, Malabe, Sri Lanka, 2014, pp. 62‒65.

  52. S. G. Wesnousky, S. Kumar, R. Mohindra, and V. C. Thakur, “Uplift and convergence along the Himalayan frontal thrust,” Tectonics 18, 967–976 (1999).

    Article  Google Scholar 

  53. V. Wise, L. T. Grady, and F. Salvini, “Topographic lineament domains of the Appalachians. Sorne new methods and techniques for paleostress analysis,” International Geoscience and Remote Sensing Symposium, Amherst, Mass., 1985 (1985), pp. 125‒130.

  54. R. S. Yeats and V. C. Thakur, “Reassessment of earthquake hazard based on a fault-bend fold model of the Himalayan plate-boundary fault,” Current Sci. 74, 230‒233 (1998).

    Google Scholar 

  55. J. Zhang, M. Santosh, X. Wang, L. Guo, X. Yang, and B. Zhang, “Tectonics of the northern Himalaya since the India–Asia collision,” Gondwana Res. 21, 939–960 (2012).

    Article  Google Scholar 

  56. P. Z. Zhang, Z. Shen, M. Wang, W. Gan, R. Bürgmann, P. Molnar, Q. Wang, Z. Niu, J. Sun, J. Wu, S. Hanrong, and Y. Xinzhao, “Continuous deformation of the Tibetan Plateau from global positioning system data,” Geology 32, 809–812 (2004).

    Article  Google Scholar 

  57. Landsat 5 TM (September 1, 2016), Landsat 8 OLI. https://earthexplorer.usgs.gov. Accessed March 21, 2014.

  58. Resourcesat LISS-III. https://earthexplorer.usgs.gov. Accessed March 18, 2013.

  59. Digital Terrain Elevation Data Level 2 regional DEM (SRTM 30m.) https://earthexplorer.usgs.gov. Accessed April 13, 2017.

  60. Radar wide-swath ScanSAR images (RADARSAT 2 ScanSAR).https://mdacorporation.com/geospatial/ international/satellites/RADARSAT-2. Accessed March 18, 2013.

  61. RISAT-1 Medium Resolution ScanSAR. https://uops.nrsc.gov.in. Accessed March 10, 2014.

  62. Centre of Remote Sensing.https://uops.nrsc.gov.in. Accessed March 12, 2014.

Download references

ACKNOWLEDGMENTS

The authors acknowledge the contributions of Mr. Shashi Kumar Gaurav and Mr. Rohit Kumar Singh, and M.Tech. students, IIRS (ISRO) (Dehradun, India) for their help in data preparation.

The authors are grateful to reviewers Dr. L.P. Imaeva (Institute of the Earth’s Crust, Siberian Branch of RAS, Irkutsk, Russia) and Prof. E.A. Rogozhin (Schmidt Institute of Physics of the Earth, RAS, Moscow, Russia) for comment, and M.N. Shoupletsova (Geological Institute, RAS, Moscow, Russia) for editing.

Funding

The study was funded by Indian Space Research Organization (ISRO) under the Earth Observation Application Mission (EOAM) project scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, S., Chatterjee, R.S., Mohanty, S.P. et al. Analysis of the Maximum Principal Stress Directions in the Himalayas: A Remote Sensing Based Approach. Geotecton. 55, 83–93 (2021). https://doi.org/10.1134/S0016852121010088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852121010088

Keywords:

Navigation