Skip to main content
Log in

Kinematic Evolution Model of Fault-Related Anticline based on the Study of the Striated Pebbles of the Related Growth-Strata: A Case Study of the Es Satah Anticline in Southern Tunisian Atlas, Tunisia

  • Published:
Geotectonics Aims and scope

Abstract

Through several stations on the forelimb of the Es Satah anticline belonging to Gafsa basin part of the southern Tunisian Atlas, an analysis of the striations encountered on the pebbles surfaces in the conglomerates of the growth-strata shows a remarkable variation; vertically and laterally from one station to another. Taking into account of the simple shear deformation, field observations have revealed several indexes of the flexural flow. Both of the tectonic and micro-tectonic studies in the Gafsa basin have shown the trending shortening (σ1) ranging from 150° to 180° N. Therefore, the striation azimuths were determined according to three profiles, I, II and III. These profile stretch from the NE to the SW on the forelimb of Es Satah anticline which displays a variation ranging from 167° to 138° N, from 165° to 147° N and from 154° to 138° N, respectively. Since these variations are incoherent with the regional shortening (σ1) direction, it allows us to discard any evidence of a direct relationship between the regional trending shortening (σ1) and the striation azimuths of the pebbles surfaces of growth-strata and to speculate a possible direct correlation between those variations and the kinematic evolution of the Es Satah anticline. Accordingly, we have suggested a conceptual model which paved the way to follow step by step the anterior stages of the deformation and identify the different palaeo-periclinal limits of the Es Satah anticline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. Biley, M. Rakus, P. Robinson, and J. Salaj, “Essai de corrélation des formations miocènes du sud de la Dorsale tunisienne,” Note Serv. Geol. Tunis., Trav. Geol., Tunis. 7, 73–92 (1972).

  2. A. Esteves, A. C. Lopez-Garrido, and C. Sanz De Gadeano, “Estudio de las deformaciones recientes Negratin (Depression de Guadix-Baza),” in Reunion sobre la geodinamica de las Cordilleras Béticas y Mar de Alboràn, Ed. by U. Grananda (Secret Publication, Granada, 1976), pp. 165–195.

    Google Scholar 

  3. A. Etchecopar and J. Malavieille, “Computer models of pressure shadows: A method for strain measurement and shear-sense determination,” J. Struct. Geol. 9, 667–677 (1987).

    Article  Google Scholar 

  4. A. Hlaiem, These Doctorat (Paris, 1998).

  5. A. Hlaiem, “Halokinesis and structural evolution of the major features in eastern and southern Tunisian Atlas,” Tectonophysics 306, 79‒95 (1999).

    Article  Google Scholar 

  6. A. Jauzein, “Contribution à l’étude géologique des confins de la dorsale,” Ann. Mines Geol. (Tunis.) 22, 475 (1967).

  7. A. Kadri, These Doctorat (Paris, 1988).

  8. A. Kadri, F. Matmati, N. Ben Ayed, and M. Ben Haj Ali, “Découverte de l’Eocène inférieur continental au Jebel Lessouada (Tunisie centrale),” Note Serv. Geol. Tunis. 51, 53–59 (1986).

    Google Scholar 

  9. A. Said, C. Dominique, P. Baby, and J. Ouali, “Active oblique ramp faulting in the Southern Tunisian Atlas,” Tectonophysics 499, 178–189 (2011).

    Article  Google Scholar 

  10. A. Said, P. Baby, C. Dominique, and J. Ouali, “Structure, paleogeographic inheritance, and deformation history of the southern Atlas foreland fold and thrust belt of Tunisia,” Tectonics 30 (2011). https://doi.org/10.1029/2011TC002862

  11. B. Addoum, These Doctorat (Paris, 1995).

  12. B. Mannaï-Tayech and O. Otero, “Un nouveau gisement miocène à ichthyofaune au sud de la chaîne des Chotts (Tunisie méridionale). Paléoenvironnement et paléobiogéographie,” C. R. Palevol. 4, 405–412 (2005).

    Article  Google Scholar 

  13. B. Mannaï-Tayech, “Les séries silicoclastiques miocènes du Nord-Est au Sud-Ouest de la Tunisie: une mise au point,” Geobios 39, 71–84 (2006).

    Article  Google Scholar 

  14. B. Mannaï-Tayech, “The lithostratigraphy of Miocene series from Tunisia, revisited,” J. Afr. Earth Sci. 54, 53–61 (2009).

    Article  Google Scholar 

  15. C. Yaïch, These Doctorat (Tunis, 1997).

  16. D. Aissaoui, These Doctorat (Strasbourg, 1984).

  17. E. Mercier and J. L. Mancy, “Le blocage de transport sur le plat des plis de propagation: une cause possible de chevauchement hors séquence,” Geodin. Acta (Paris) 8, 199–210 (1995).

    Article  Google Scholar 

  18. E. Mercier, F. Outtani, and D. Frizon de Lamotte, “Forward modeling of the late evolution of fault-propagation folds: Principal and examples,” J. Struct. Geol. 19, 185–193 (1997).

    Article  Google Scholar 

  19. F. L. Casagrande, These Doctorat (Paris, 1985).

  20. F. Ouattani, These Doctorat (Cergy-Pontoise, France, 1996).

  21. F. Ouattani, B. Addoum, E. Mercier, D. Frizon de Lamotte, and J. Andrieux, “Geometry and kinematics of the south Atlas front, Algeria and Tunisa,” Tectonophysics, 249, 233‒248 (1995).

    Google Scholar 

  22. F. Rekhiss, These d’Etat (Tunis, 2007).

    Google Scholar 

  23. F. Schrader, “Symmetry of pebble deformation involving solution pits and slip-lineations in the northern Alpine Molasse Basin,” J. Struct. Geol. 10, 41‒52 (1988).

    Article  Google Scholar 

  24. F. Zargouni, These Doctorat (Strasbourg, 1986).

  25. G. Castany, “Etude géologique de l’Atlas Tunisien Oriental,” Ann. Mines Geol. (Tunis.) 8, 632 (1951).

  26. G. Castany, “L’orogenèse de l’Atlas tunisien,” Bull. Soc. Geol. Fr. S6-I, 701–720 (1951).

    Google Scholar 

  27. G. Castany, Essai de synthèse géologique du territoire Tunisie-Sicil, Vol. 16 of Ann. Mines Geol. (Tunis.) (1956).

  28. G. Creuzot, E. Mercier, J. Ouali, and P. Tricard, “La tectonogenèse atlasique en Tunisie centrale: Apport de la modélisation géométrique,” Eclogae Geol. Helv. 86, 609–627 (1993).

    Google Scholar 

  29. H. Ben Ouezdou and F. Zargouni, “Nouvelles données à propos du Quaternaire et de la tectonique récente dans la chaîne Métlaoui (sud-ouest de la Tunisie),” Méditerranée 64 (2), 22–26 (1988).

    Article  Google Scholar 

  30. H. Philip, J. Andrieux, M. Dlala, L. Chihi, and N. Ben Ayed, “Evolution tectonique mio-plio-quaternaire du fossé de Kasserine (Tunisie Centrale): Implication sur l’évolution géodynamique récente de la Tunisie,” Bull. Soc. Geol. Fr. II, 55‒568 (1986).

    Article  Google Scholar 

  31. H. Philip, “Plio-quaternary evolution of the stress-field in Mediterranean zones of subduction and collision,” Ann. Geophys., Ser. B: Terr. Planet. Phys. 5, 301–319 (1987).

    Google Scholar 

  32. H. Rouvier, These Doctorat (Paris, 1977).

  33. H. Trigui, R. Ahmadi, J. Ouali, C. Khalfi, and E. Mercier, “Evidence of fault-propagation folds in foreland basin: The case of Chemsi and Belkhir anticlines of southern Tunisian Atlas,” Arab. J. Geosci. 9, 706–722 (2016).

    Article  Google Scholar 

  34. H. Zouari, These Doctorat (Besançon, France, 1984).

  35. H. Zouari, These Doctorat (Tunis, 1995).

  36. J. C. Hippolyte, “Paleostress and neotectonic analysis of sheared conglomerates: Southwest Alps and Southern Apennines,” J. Struct. Geol. 23, 421–429 (2001).

    Article  Google Scholar 

  37. J. Delteil, “Le cadre néotectonique de la sédimentation plio-quaternaire en Tunisie centrale et aux ils Kerkennah,” Bull. Soc. Geol. Fr. S7-XXIV, 187–193 (1982).

  38. J. Delteil, R. Truillet, and F. Zargouni, “Extension et ampleur de la tectonique tangentielle dans l’Axe N-S (Tunisie Centrale),” 7ème Réunion annuelle des Sciences de la Terre, Lyon, France, 1979 (Soc. Geol. Fr., Paris, 1979), p. 158.

    Google Scholar 

  39. J. F. Ritz, “Tectonique récente et sismotectonique des Alpes du Sud: Analyse en termes de contraintes,” Quaternaire 3, 11–124 (1992).

    Article  Google Scholar 

  40. J. Ouali, “Structure et géodynamique du chaînon Nara-Sidi Khalif (Tunisie central),” Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine 9, 155–182 (1984).

    Google Scholar 

  41. J. Ouali, Thèse Complémentaires (Tunis, 2007).

  42. K. Bargach, These Doctorat (Rabat, 2011).

  43. K. Bargach, A. Chalouan, J. Galindo-Zaldivar, P. Ruano, M. Ahmamou, A. Jabaloy, M. Akil, C. Sanz De Galdeano, A. Chabli, and M. Benmakhlouf, “Détermination des paléo-contraintes à partir des galets striés des formations conglomératiques Plio-Quaternaire au front de la chaine de Rif (Maroc): La ride de Trhat,” Notes Mem. Serv. Geol. (Morocco) 452, 99–108 (2004).

    Google Scholar 

  44. K. Bargach, P. Ruano, A. Chabli, J. Galindo-Zaldïvar, A. Chalouan, A. Jabaloy, M. Akil, M. Ahmamou, C. Sanz De Gadeano, and M. BenMakhlouf, “Recent tectonic deformations and stresses in the frontal part of the Rif Cordillera and the Saïss Bassin (Fes and Rabat regions, Marocco),” Pure Appl. Geophys. 161, 521–540 (2004).

    Article  Google Scholar 

  45. L. Chihi, These Doctorat (Orsay, France, 1984).

  46. L. Chihi, M. Ben Haj Ali, and N. Ben Ayed, “Mécanisme et signification structurale du plissement dans la chaine des Chotts (Tunisie méridionale). Analogie avec les plis associés au décrochement E-W de Sbiba (Tunisie centrale),” C. R. Acad. Sci., Ser. II: Mech. Phys. Chim., Sci. Terre. Univers 315, 1254–1252 (1992).

    Google Scholar 

  47. L. Chihi and H. Philip, “Le bloc atlaso-pélagien: place et évolution géodynamique dans le contexte subduction-collision de la Méditerrané centrale (Afrique du nord–Sicile) du Miocène au Quaternaire,” Notes Serv. Geol., Tunis. 65, 49–61 (1999).

  48. L. Pervinquière, These Doctorat (Paris, 1903).

  49. M. Bedir, These Doctorat (Tunis, 1995).

  50. M. Bedir and F. Zargouni, “Structuration Post-miocène des bassins sédimentaires du Sahel de Mahdia: Analyse géométrique et cinématique des données de subsurface,” Rev. Sci. Terre (Tunis.) 4, 1–55 (1986).

  51. M. Dlala, L. Chihi, N. Ben Ayed, and H. Philip, “Géodynamique de quelques bassin sédimentaires tunisiens 2: Tectonique syn-sédimentaire néogène à quaternaire près de Kasserine,” 10eme R. A. S. T., Bordeaux, France, 1984.

  52. M. Dlala, These d’Etat (Tunis, 1995).

    Google Scholar 

  53. M. Gharbi, O. Bellier, A. Masrouhi, and N. Espurt, “Recent spatial and temporal changes in the stress regime along the Southern Tunisian Atlas front and the Gulf of Gabes: New insights from fault kinematics analysis and seismic profiles,” Tectonophysics 626, 120–136 (2014).

    Article  Google Scholar 

  54. M. Patriat, N. Ellouz, Z. Dey, J. M. Gaulier, and H. Ben Kilani, “The Hammam et Gabes and Chotts basins (Tunisia): A review of the subsidence history,” Sediment. Geol. 156, 241–262 (2003).

    Article  Google Scholar 

  55. M. Solignac, These Doctorat (Lyon, 1927).

  56. M. Turki, These Doctorat (Tunis, 1985).

  57. N. Bahrouni, S. Bouaziz, A. Soumaya, N. Ben Ayed, K. Attafi, Y. Houla, A. El Ghali, and N. Rebai, “Neotectonic and seismotectonic investigation of seismically active regions in Tunisia: A multidisplinary approach,” J. Seismol. 18, 235–256 (2014).

    Article  Google Scholar 

  58. N. Ben Ayed, These d’Etat (Paris, 1986).

    Google Scholar 

  59. N. Ben Ayed, “Evolution tectonique de l’avant-pays de la chaine alpine de Tunisie du début du Mésozoïque à l’Actuel,” Ann. Mines Geol. (Tunis.) 32, 286 (1993).

  60. N. Boukadi, These Doctorat (Tunis, 1994).

  61. N. Boukadi, These Doctorat (Strasbourg, 1985).

  62. N. Cardozo and R. W. Allmendinger, “Spherical projections with OSXStreone,” Comput. Geosci. 51, 193‒205 (2013). https://doi.org/10.1016/j.cageo.2012.07.021

    Article  Google Scholar 

  63. P. Combes, These Doctorat (Strasbourg, 1984).

  64. P. F. Burollet, “Contribution à l’étude stratigraphique de la Tunisie Centrale,” Ann. Mines Geol. (Tunis.) 18, 345 (1956).

  65. P. Ruano and J. Galindo-Zaldívar, “Striated and pitted pebbles as palaeostress markers: An example from the central transect of the Betic Cordillera (SE Spain),” Tectonophysics 379,183-198 (2004).

    Article  Google Scholar 

  66. P. Ruano, K. Bargach, J. Galindo-Zaldívar, A. Chalouan, and M. Ahmamou, “Recent paleostress from striated pebbles and fold development in the front of a mountain range: The Prerif Ridge (Rif Cordillera, Marocco),” in Tectonics of the Western Mediterranean and North Africa, Vol. 262 of Geol. Soc. London, Spec. Publ., Ed. by G. Moratti and A. Chalouan (London, 2006), pp. 87–99.

  67. R. Ahmadi, These Doctorat (Nantes, France, 2006).

  68. R. Ahmadi, E. Mercier, J. Ouali, J. L. Mansy, B. Van-vliet-Lanoe, P. Launeau, and F. Rekhiss, “The geomorphological hall marks of hinge migration in fault related folds. A study case in Southern Tunisian Atlas,” J. Struct. Geol. 28, 721‒728 (2006).

    Article  Google Scholar 

  69. R. Ahmadi, E. Mercier, and J. Ouali, “Growth-strata geometry in fault-propagation folds: A case study from the Gafsa basin, Southern Tunisian Atlas,” Swiss J. Geosci. 106, 91–107 (2013).

    Article  Google Scholar 

  70. R. A. Gharbi, L. Chihi, M. Hammami, A. Soumaya, and A. Kadri, “Manifestation tectono-diapirique synsédimentaires et polyphasées d’âge Crétacé supérieur–Quaternaire dans la region de Zag Et Tir (Tunisie centre-Nord),” C. R. Geosci. 337, 1293–1300 (2005).

    Article  Google Scholar 

  71. R. Bracene and D. Frizon de Lamotte, “The origin of intraplate deformation in the Atlas system of the western and central Algeria: From Jurassic rifting to Cenozoic–Quaternary inversion,” Tectonophysics 357, 207‒226 (2002).

    Article  Google Scholar 

  72. R. Coque, These Doctorat (Paris, 1962).

  73. R. W. Allmendinger, N. Cardozo, and D. M. Fisher, Structural Geology Algorithms: Vectors and Tensors (Cambridge Univ. Press, Cambridge, 2012).

    Google Scholar 

  74. S. Bouaziz, These Doctorat (Tunis, 1995).

  75. S. Bouaziz, E. Barrier, M. Soussi, M. M. Turki, and H. Zouari, “Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record,” Tectonophysics 357, 227‒253 (2002).

    Article  Google Scholar 

  76. S. Bouaziz, Y. Jedoui, E. Barrier, and J. Angelier, “Néotectonique affectant les dépôts marins tyrrhéniens du littoral sud-est tunisien: Implication pour les variations du niveau marin,” C. R. Geosci. 335, 247‒254 (2003).

    Article  Google Scholar 

  77. S. Ellis, G. Schreurs, and M. Panien, “Comparisons between analogue and numerical models of thrust wedge development,” J. Struct. Geol. 26, 1659‒1675 (2004).

    Article  Google Scholar 

  78. T. J. A. Blondel, These Doctorat (Geneva, 1991).

  79. V. Perthuisot, These Doctorat (Paris, 1978).

Download references

ACKNOWLEDGMENTS

The authors would like to thank a lot, the Prof. Farhat Rekhiss (ENIS, Sfax, Tunisia) for his time and fruitful scientific discussion and our colleagues Noureddine Majdoub, Hamdi Omar and Hatem Majri from National Engineering School of Sfax (Tunisia) who took part in the present studies helping and accompanying us on the field trips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Khalfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalfi, C., Ahmadi, R., Trigui, H. et al. Kinematic Evolution Model of Fault-Related Anticline based on the Study of the Striated Pebbles of the Related Growth-Strata: A Case Study of the Es Satah Anticline in Southern Tunisian Atlas, Tunisia. Geotecton. 53, 419–432 (2019). https://doi.org/10.1134/S001685211903004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001685211903004X

Keywords:

Navigation