Skip to main content
Log in

Tectonomagmatic evolution of the Earth and Moon

  • Published:
Geotectonics Aims and scope

Abstract

The Earth and Moon evolved following a similar scenario. The formation of their protocrusts started with upward crystallization of global magmatic oceans. As a result of this process, easily fusible components accumulated in the course of fractional crystallization of melt migrating toward the surface. The protocrusts (granitic in the Earth and anorthositic in the Moon) are retained in ancient continents. The tectonomagmatic activity at the early stage of planet evolution was related to the ascent of mantle plume of the first generation composed of mantle material depleted due to the formation of protocrusts. The regions of extension, rise, and denudation were formed in the Earth above the diffluent heads of such superplumes (Archean granite-greenstone domains and Paleoproterozoic cratons), whereas granulite belts as regions of compression, subsidence, and sedimentation arose above descending mantle flows. The situation may be described in terms of plume tectonics. Gentle uplifts and basins (thalassoids) in lunar continents are probable analogues of these structural elements in the Moon. The period of 2.3–2.0 Ga ago was a turning point in the tectonomagmatic evolution of the Earth, when geochemically enriched Fe-Ti picrites and basalts typical of Phanerozoic within-plate magmatism became widespread. The environmental setting on the Earth’s surface changed at that time, as well. Plate tectonics, currently operating on a global scale, started to develop about ∼2 Ga ago. This turn was related to the origination of thermochemical mantle plumes of the second generation at the interface of the liquid Fe-Ni core and silicate mantle. A similar turning point in the lunar evolution probably occurred 4.2–3.9 Ga ago and completed with the formation of large depressions (seas) with thinned crust and vigorous basaltic magmatism. Such a sequence of events suggests that qualitatively new material previously retained in the planets’ cores was involved in tectonomagmatic processes at the middle stage of planetary evolution. This implies that the considered bodies initially were heterogeneous and were then heated from above to the bottom by propagation of a thermal wave accompanied by cooling of outer shells. Going through the depleted mantle, this wave generated thermal superplumes of the first generation. Cores close to the Fe + FeS eutectics in composition were affected by this wave in the last turn. The melting of the cores resulted in the appearance of thermochemical superplumes and corresponding irreversible rearrangement of geotectonic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Artyushkov, Physical Tectonics (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  2. Yu. G. Belostotsky, A Common Basis of the Universe (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  3. O. A. Bogatikov, E. V. Sharkov, A. V. Veselovsky, and V. B. Meshcheryakova, “Synchronism in Development of Cenozoic Volcanic Arcs and Backarc Basins: Causes and Effects,” Dokl. Akad. Nauk 427(4), 512–517 (2009) [Dokl. Earth Sci. 427A (6), 907–911 (2009)].

    Google Scholar 

  4. A. B. Vrevsky, V. A. Matrenichev, and M. S. Ruzh’eva, “Petrology of Komatiites in the Baltic Shield and Isotope Geochemical Evolution of Their Sources,” Petrologiya 11(6), 587–617 (2003) [Petrology 11 (6), 532–561 (2003)].

    Google Scholar 

  5. E. M. Galimov, “The Origin of the Earth-Moon System: Current Status of the Problem,” in Problems of Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (LIBROKOM, Moscow, 2008), pp. 213–222 [in Russian].

    Google Scholar 

  6. A. V. Girnis and I. D. Ryabchikov, “Experimental Petrology and Genesis of Komatiites,” in Early Precambrian Komatiites and High-Mg Volcanic Rocks of the Baltic Shield, Ed. by O. A. Bogatikov (Nauka, Leningrad, 1988) [in Russian].

    Google Scholar 

  7. N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, Deep Geodynamics (GEO, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  8. L. Xanfomaliti, “Uknown Mercury,” Scientific American, No. 2, 64–73 (2008).

  9. O. L. Kuskov and V. A. Kronrod, “The Moon: Chemical Composition and Internal Structure,” Astronom. Vestnik 33(5), 437–446 (1999).

    Google Scholar 

  10. L. I. Lobkovsky, A. M. Nikishin, and V. E. Khain, Current Issues of Geotectonics and Geodynamics (Nauchnyi Mir, Moscow, 2004) [in Russian].

    Google Scholar 

  11. A. V. Mokhov, P. M. Kartashov, and O. A. Bogatikov, The Moon under a Microscope (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  12. A. E. Ringwood, Origin of the Earth and Moon (Springer, Berlin, 1979; Nedra, Moscow, 1982).

    Google Scholar 

  13. S. I. Rybakov, Massive Sulfide Ore Mineralization in the Early Precambrian of the Baltic Shield (Nauka, Leningrad, 1987) [in Russian].

    Google Scholar 

  14. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985; Mir, Moscow, 1988).

    Google Scholar 

  15. L. L. Shanin, M. M. Arakelyants, O. A. Bogatikov, et al., “40Ar/39Ar Dating of Lunar Ground Samples From the Sea of Crises,” Geokhimiya 19(7), 970–980 (1981).

    Google Scholar 

  16. E. V. Sharkov, Formation of Layered Intrusions and Related Ore Mineralization (Nauchnyi Mir, Moscow, 2006) [in Russian].

    Google Scholar 

  17. E. V. Sharkov and O. A. Bogatikov, “Early Stages of Tectonomagmatic Development of the Earth and Moon: Similarities and Differences,” Petrologiya 9(2), 115–138 (2001) [Petrology 9 (2), 97–118 (2001)].

    Google Scholar 

  18. E. V. Sharkov and O. A. Bogatikov, “Comparative Study of Tectonomagmatic Evolution of the Earth and Moon: A Key to Understanding the Formation and Internal Development of Terrestrial Planets,” Geokhimiya 41(6), 579–586 (2003) [Geochem. Int. 41 (6), 519–524 (2003)].

    Google Scholar 

  19. E. V. Sharkov, O. A. Bogatikov, and I. S. Krasivskaya, “Role of Mantle Plumes in the Tectonics of Early Precambrian in the Eastern Baltic Shield,” Geotektonika 34(2), 3–25 (2000) [Geotectonics 34 (2), 85–105 (2000)].

    Google Scholar 

  20. E. V. Sharkov and M. M. Bogina, “Evolution of Paleoproterozoic Magmatism: Geology, Geochemistry, and Isotopic Constraints,” Stratigr. Geol. Korrelyatsiya 14(4), 3–27 (2006) [Stratigr. Geol. Correlation 14 (4), 345–367 (2006)].

    Google Scholar 

  21. E. V. Sharkov and M. M. Bogina, “Early Precambrian Mafic-Ultramafic Magmatism (from the Archean to Paleoproterozoic),” Stratigr. Geol. Korrelyatsiya 17(2), 3–24 (2009) [Stratigr. Geol. Correlation 17 (2), 113–117 (2009)].

    Google Scholar 

  22. E. V. Sharkov, K. A. Evseeva, I. S. Krasivskaya, and A. V. Chistyakov, “Magmatic Systems of the Early Paleoproterozoic Baltic Large Igneous Province of Silicic High-Magnesian (Boninite-Like) Series,” Geol. Geofiz. 46(9), 968–980 (2005).

    Google Scholar 

  23. E. V. Sharkov, I. S. Krasivskaya, and A. V. Chistyakov, “Dispersed Mafic-Ultramafic Intrusive Magmatism of Early Paleoproterozoic Mobile Zones in the Baltic Shield: A Case of drusite (coronite) Complex of the Belomorian Region,” Petrologiya 12(6) (2004) [Petrology 12 (6), 561–582 (2004)].

    Google Scholar 

  24. E. V. Sharkov and V. B. Svalova, “Late Cenozoic Geodynamics of the Alpine Foldbelt and Formation of Intracontinental Seas: Petrologic and Geomechanical Aspects,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 1, 3–11 (2005).

  25. C. Alibert, M. D. Norman, and M. T. McCulloch, “An Ancient Sm-Nd Age for a Ferroan Anorthosite Clast from Lunar Breccia 67016,” Geochim. Cosmochim. Acta 58, 2921–2926 (1994).

    Article  Google Scholar 

  26. Anonymous. “Penrose Field Conference on Ophiolites,” Geotimes 17, 24–25 (1972).

  27. N. T. Arndt and R. W. Nesbitt, “Geochemistry of Munro Township Basalts,” in Komatiites, Ed. by N. T. Arndt, E. G. Nisbett (Allen and Unwin, London, 1982), pp. 309–329.

    Google Scholar 

  28. J. Blichert-Toft and F. Albarede, “Age and Nature of the Protocrust of the Jack Hills Zircon Host Rock,” in Abstracts of AGU Fall Meeting, 15–19 December 2008 (San Francisco, 2008), Abstract V11E-05.

  29. O. A. Bogatikov, V. I. Kovalenko, E. V. Sharkov, and V. V. Yarmolyuk, Magmatism and Geodynamics. Terrestrial Magmatism Throughout the Earth’s History (Gordon and Breach Sci. Publ., Amsterdam, 2000).

    Google Scholar 

  30. P. Cartigny, “Stable Isotopes and the Origin of Diamonds,” Elements 1(2), 79–84 (2005).

    Article  Google Scholar 

  31. W. G. Ernst, “Subduction, Ultrahigh-Pressure Metamorphism and Regurgitation of Byont Crustal Slices — Implications for Arcs and Continental Growth,” Phys. Earth Planet. Inter. 127, 253–275 (2001).

    Article  Google Scholar 

  32. R. Frei, A. Polat, and A. Meibom, “The Hadean Upper Mantle Conundrum: Evidence for Source Depletion and Enrichment from Sm-Nd, Re-Os, and Pb Isotopic Compositions in 3.71 Gy Boninite-Like Metabasalts from the Isua Supracrustal Belt, Greenland,” Geochim. Cosmochim. Acta 68(7), 1645–1660 (2004).

    Article  Google Scholar 

  33. S. J. G. Galer and S. L. Goldstein, “Early Mantle Differentiation and Its Thermal Consequences,” Geochem. Cosmochim. Acta 55, 227–239 (1991).

    Article  Google Scholar 

  34. M. G. Green, J. P. Sylvester, and R. Buick, “Growth and Recycling of Early Archaean Continental Crust: Geochemical Evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia,” Tectonophysics 322, 69–88 (2000).

    Article  Google Scholar 

  35. E. G. Grosch, N. McLoughlin, M. de Witt, and H. Furnes, “Drilling for the Archean Roots of Life and Tectonic Earth in the Barberton Moutains,” Scientific Drilling, No. 8, 24–28 (2009).

  36. H. Jeffries, The Earth, 2nd Ed. (Cambridge Univ. Press, London, 1929).

    Google Scholar 

  37. C. J. Hale, “Paleomagnetic Data Suggest Link Between the Archaean-Proterozoic Boundary and Inner-Core Nucleation,” Nature 329(6136), 233–236 (1987).

    Article  Google Scholar 

  38. T. M. Harrison, J. Blichert-Toft, W. Muller, et al., “Heterogeneous Hadean Hafnium: Evidence of Continental Crust by 4.4–4.5 Ga,” Science 310, 1947–1950 (2005).

    Article  Google Scholar 

  39. H. Hiesinger and J. W. Head, III, “New Views of Lunar Geoscience: An Introduction and Overview,” Rev. Mineral. Geochem., 60, 1–81 (2006).

    Article  Google Scholar 

  40. H. Karason and R. D. van der Hilst, “Constraints on Mantle Convection from Seismic Tomography,” in The History and Dynamics of Global Plate Motions (Geophys. Monogr. 121), pp. 277–289.

  41. M. J. Le Bas, “IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks,” J. Petrol. 41, 1467–1470 (2000).

    Google Scholar 

  42. H. Martin, R. H. Smithies, R. Rapp, et al., “An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution,” Lithos 79, 1–24 (2005).

    Article  Google Scholar 

  43. W. F. McDonough, “Compositional Model for the Earth’s Core,” in Treatise on Gepchemistry. The Mantle and Core (Elsevier, Amsterdam, 2003), Vol. 2, pp. 547–568.

    Google Scholar 

  44. V. A. Melezhik, A. E. Fallik, E. Hanski, et al., “Emergence of Aerobic Biosphere During the Archean-Proterozoic Transition: Challenges of Future Research,” GSA Today 15(11), 4–10 (2005).

    Article  Google Scholar 

  45. A. A. Nemchin, M. J. Whitehouse, R. T. Pidgeon, and C. Meyer, “Oxygen Isotopic Signature of 4.4–3.9 Ga Zircons as a Monitor of Differentiation Processes on the Moon,” Geochim. Cosmochim. Acta 70(7), 1864–1872 (2006).

    Article  Google Scholar 

  46. H. S. O’Neilly and H. Palme, “Composition of the Silicate Earth: Implication for Accretion and Core Formation,” in The Earth Mantle: Structure, Composition and Evolution: The Ringwood Volume, Ed. by I. Jackson (Univ. Press, Cambridge, 1997), pp. 1–127.

    Google Scholar 

  47. J. J. Papike, G. Ryder, and C. K. Schearer, “Lunar Samples,” Rev.Mineral. Planet. Materials 36, 5–234 (1998).

    Google Scholar 

  48. A. R. Philpotts, Principles of Igneous and Metamorphoc Petrology (Prentice Hill, (Englewood Cliffs, 1990).

  49. A. Polat, A. W. Hofmann, and M. T. Rosing, “Boninite-Like Volcanic Rocks in the 3.7–3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth,” Chem. Geol. 184(3/4), 231–254 (2002).

    Article  Google Scholar 

  50. Precambrian Ophiolites and Related Rocks, Ed. by T. Kusky (Elsevier, Amsterdam, 2004).

    Google Scholar 

  51. S. K. Rancorn, “Lunar Magnetism,” Nature 304(5927), 589–596 (1983).

    Article  Google Scholar 

  52. H. Rollinson, Early Earth Systems. A Geochemical Approach (Backwell Publ., Oxford-Carlton, 2007).

    Google Scholar 

  53. A. A. Shchipansky, A. V. Samsonov, E. V. Bibikova, et al., “2.8 Ga Boninite-Hosting Partial Suprasubduction Zone Ophiolite Sequences from the North Karelian Greenstone Belt, NE Baltic Shield, Russia,” in Precambrian Ophiolites and Related Rocks, Ed. by T. Kusky (Elsevier, Amsterdam, 2004), pp. 424–486.

    Google Scholar 

  54. G. A. Snyder, L. E. Borg, L. E. Nyquist, and L. A. Taylor, “Chronology and Isotopic Constraints on Lunar Evolution,” in The Origin of the Earth and Moon (University Arizona Press, 2000), pp. 361–395.

  55. G. A. Snyder, C. R. Neal, L. A. Taylor, and A. N. Halliday, “Processes Involved in the Formation of Magnesian-Suite Plutonic Rocks from the Highlands of the Earth’s Moon,” J. Geophys. Res. 100(E5), 9365–9388 (1995a).

    Article  Google Scholar 

  56. G. A. Snyder, L. A. Taylor, and A. N. Halliday, “Chronology and Petrogenesis of the Lunar Highlands Alkali Suite: Cumulates from KREEP Basalts Crystallization,” Geochim. Cosmochim. Acta 59(6), 1185–1203 (1995b).

    Article  Google Scholar 

  57. R. A. Sproule, C. M. Lesher, J. A. Ayer, et al., “Spatial and Temporal Variations in the Geochemistry of Komatiitic Basalts in the Abitibi Greenstone Belt,” Precambr. Res. 115, 153–186 (2002).

    Article  Google Scholar 

  58. P. D. Spudis, The Once and Future Moon (Smithsonian Institution Press, Washington, DC, 1998).

    Google Scholar 

  59. D. J. Stevenson, T. Spohn, and G. Schubert, “Magnetism and Thermal Evolution of the Terrestrial Planets,” Icarus 54, 466–489 (1983).

    Article  Google Scholar 

  60. J. W. Valley, W. H. Peck, E. M. King, et al., “A Cool Early Earth,” Geology 30, 351–354 (2002).

    Article  Google Scholar 

  61. The Archaean Limpopo Granulite Belt: Tectonics and Deep Crustal Processes, Ed. by D. D. van Reenen, C. Roering, L. D. Ashwal, and M. J. de Wit (Prec. Res. Spec. Issue 55 (1/4), 1992).

  62. P. H. Wänke and G. Dreibus, “Chemical Composition and Accretion History of the Terrestrial Planets,” Phil. Trans. R. Soc. London A235, 545–557 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Sharkov.

Additional information

Original Russian Text © E.V. Sharkov, O.A. Bogatikov, 2010, published in Geotektonika, 2010, Vol. 44, No. 2, pp. 3–22.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharkov, E.V., Bogatikov, O.A. Tectonomagmatic evolution of the Earth and Moon. Geotecton. 44, 85–101 (2010). https://doi.org/10.1134/S0016852110020019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852110020019

Keywords

Navigation