Skip to main content
Log in

Total Electron Content Variability in the African Ionosphere Observed during Ascending and Decaying Geomagnetic Storms

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The geomagnetic storms of October 1, 2012, and May 28, 2017, of the mid- and equatorial-latitude ionosphere responses of the African sector at cycle 24 solar ascending and descending levels are presented. The relative total electron content (rTEC) anomalies at the initial commencement until recovery phases of storms present interesting results. We employed a 15-day sliding average window to study rTEC using 7 (Global Navigation Satellite Systems) GNSS stations from the Africa Geodetic Reference Frame (AFREF) to characterize both storm ionospheric phases over the sector. The recovery phase of both storms lasted 17 h for October 1 and 14 h for May 28 with IMF Bz < 0 when the solar plasma wind speed recorded values of 353 km/s and 336 km/s, respectively. The results showed a significant equatorial latitude response of the ionosphere during both the main and recovery phases of storms that occurred at different solar activity cycles, where prestorm TEC changes occurred during the daytime. Again, positive storms observed during the prestorm events place less emphasis on the solar activity cycle mostly observed at the equatorial latitude. In addition, the magnetic field lines are shaped by the injection of a prompt penetration electric field (PPEF) that prompts prestorm rTEC enhancements, where the phenomenon of the equatorial ionization anomaly (EIA) governs the midlatitude Africa ionospheric plasma distribution based on gradients and is more pronounced in the poststorm effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Anoruo, C.M., Rabiu, B., Okoh, D., Okeke, F.N., and Okpala, K.C., Irregularities in the African ionosphere associated with total electron content anomalies observed during high solar activity levels, Front. Astron. Space Sci., 2022, vol. 9, p. 947473. https://doi.org/10.3389/fspas.2022.947473

    Article  Google Scholar 

  2. Arikan, F., Erol, C.B., and Arikan, O., Regularized estimation of vertical total electron content from Global Positioning System data, J. Geophys. Res., 2003, vol. 108, p. 1469. https://doi.org/10.1029/2002JA009605

    Article  Google Scholar 

  3. Astafyeva, E., Zakharenkova, I., and Förster, M., Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview, J. Geophys. Res., 2015, vol. 120, no. 10, pp. 9023–9037. https://doi.org/10.1002/2015JA021629

    Article  Google Scholar 

  4. Basu, S., MacKenzie, E., Bridgwood, C., Valladares, C.E., Groves, K.M., and Carrano, C., Specification of the occurrence of equatorial ionospheric scintillations during the main phase of large magnetic storms within solar cycle 23, Radio Sci., 2010, vol. 45, no. 5, p. RS5009.

    Article  Google Scholar 

  5. Calabia, A., Anoruo, C., Shah, M., Amory-Mazaudier, C., Yasyukevich, Y., Owolabi, C., and Jin, S., Low-Latitude ionospheric responses and coupling to the February 2014 multiphase geomagnetic storm from GNSS, magnetometers, and space weather data, Atmosphere, 2022, vol. 13, p. 518. https://doi.org/10.3390/atmos13040518

    Article  Google Scholar 

  6. Candido, C.M.N., Batista, I.S., Becker-Guedes, F., Abdu, M.A., Sobral, J.H.A., and Takahashi, H., Spread F occurrence over a southern anomaly crest location in Brazil during June solstice of solar minimum activity, J. Geophys. Res., 2011, vol. 116, p. A06316. https://doi.org/10.1029/2010ja016374

    Article  Google Scholar 

  7. Codrescu, M., Fuller-Rowell, T.J., and Kutiev, I., Modeling the F layer during specific geomagnetic storms, J. Geophys. Res., 1997, vol. 102, pp. 14315–14320. https://doi.org/10.1029/97JA00638

    Article  Google Scholar 

  8. Daglis, I.A., Thorne, R.M., Baumjohann, W., and Orsini, S., The terrestrial ring current: Origin, formation, and decay, Rev. Geophys., 1999, vol. 37, pp. 407–438. https://doi.org/10.1029/1999RG900009

    Article  Google Scholar 

  9. Danilov, A.D., Prestorm ionospheric disturbances: Precursors or Q-disturbances?, Adv. Space Res., 2022, vol. 69, pp. 159–167. https://doi.org/10.1016/j.asr.2021.09.027

    Article  Google Scholar 

  10. Das, T., Roy, B., and Paul, A., Effects of transionospheric signal decorrelation on Global Navigation Satellite System (GNSS) performance studied from irregularity dynamics around the northern crest of EIA, Radio Sci., 2014, vol. 49, pp. 851–860. https://doi.org/10.1002/2014RS005406

    Article  Google Scholar 

  11. DasGupta, A., Ray, S., Paul, A., Banerjee, P., and Bose, A., Errors in position-fixing by GPS in an environment of strong equatorial scintillations in the Indian zone, Radio Sci., 2004, vol. 39, no. 1, p. RS1S30. https://doi.org/1029/2002RS002822

    Article  Google Scholar 

  12. de Abreu, A.J., Fagundes, P.R., Gende, M., Bolaji, O.S., de Jesus, R., and Brunini, C., Investigation of ionospheric response to two moderate geomagnetic storms using GPS_TEC measurements in the South American and African sectors during the ascending phase of solar cycle 24, Adv. Space Res., 2014, vol. 53, no. 9, pp. 1313–1328. https://doi.org/10.1016/j.asr.2014.02.011

    Article  Google Scholar 

  13. de Jesus, R., Fagundes, P.R., Coster, A., Bolaji, O.S., Sobral, J.H.A., Batista, I.S., de Abreu, A.J., Venkatesh, K., Gende, M., Abalde, J.R., and Sumod, S.G., Effects of the intense geomagnetic storm of September–October 2012 on the equatorial, low- and mid-latitude F region in the American and African sector during the unusual 24th solar cycle, J. Atmos. Sol. Terr. Phys., 2016, vols. 138–139, pp. 93–105. https://doi.org/10.1016/j.jastp.2015.12.015

    Article  Google Scholar 

  14. Denton, M.H., Borovsky, J.E., Skoug, R.M., Thomsen, M.F., Lavraud, B., Henderson, M.G., McPherron, R.L., Zhang, L.C., and Liemohn, M.W., Geomagnetic storms driven by ICME and CIR-dominated solar wind, J. Geophys. Res., 2006, vol. 111, p. A07S07. https://doi.org/.1029/2005JA011436

    Article  Google Scholar 

  15. Dugassa, T., Bosco Habarulema, J., and Nigussie, M., Investigation of the relationship between the spatial gradient of total electron content (TEC) between two nearby stations and the occurrence of ionospheric irregularities, Ann. Geophys., 2019, vol. 37, pp. 1161–1180. https://doi.org/10.5194/angeo-37-1161-2019

    Article  Google Scholar 

  16. Ezquer, R.G., Scidá, L.A., Migoya Orué, Y., Nava, B., Cabrera, M. A., and Brunini, C., NeQuick 2 and IRI Plas VTEC predictions for low latitude and South American sector, Adv. Space Res., 2017, vol. 7, pp. 1803–1818. https://doi.org/10.1016/j.asr.2017.10.003

    Article  Google Scholar 

  17. Foster, F.C., Erickson, P.J., Coster, A.J., Goldstein, J., and Rich, F.J., Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 2002, vol. 29, p. 1623. https://doi.org/1029/2002GL015067

    Article  Google Scholar 

  18. Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., and Vasyliunas, V.M., What is a geomagnetic storm?, J. Geophys. Res., 1994, vol. 99, pp. 5771–5792. https://doi.org/1029/93JA02867

    Article  Google Scholar 

  19. Gonzalez, W.D., Echer, E., and Tsurutani, B.T., Clua de Gonzalez, A.L., and Dal Lago, A., Interplanetary origin of intense, superintense and extreme geomagnetic storms, Space Sci. Rev., 2011, vol. 158, pp. 69–89. https://doi.org/1007/s11214-010-9715-2

    Article  Google Scholar 

  20. Greenspan, M.E., Rasmussen, C.E., Burke, W.J., and Abdu, M.A., Equatorial density depletions observed at 840 km during the great magnetic storm of March 1989, J. Geophys. Res., 1991, vol. 96, p. 13931.

    Article  Google Scholar 

  21. Gurtner, W. and Mader, G., The RINEX format: Current status, future developments, in Proceedings of the Second International Symposium of Precise Positioning with GPS, Ottawa, Canada, 1990, pp. 977–992.

  22. Habarulema, J.B., Katamzi, Z.T., Sibanda, P., and Matamba, T.M., Assessing ionospheric response during some strong storms in solar cycle 24 using various data sources, J. Geophys. Res., 2017, vol. 122, pp. 1064–1082. https://doi.org/1002/2016JA023066

    Article  Google Scholar 

  23. Huttunen, K.E.J., Koskinen, H.E.J., Karinen, A., and Mursula, K., Asymmetric development of magnetospheric storms during magnetic clouds and sheath regions, Geophys. Res. Lett., 2006, vol. 33, p. L06107. https://doi.org/10.1029/2005GL024894

    Article  Google Scholar 

  24. Jimoh, O., Lei, J., and Huang, F., Investigation of daytime total electron content enhancements over the Asian–Australian sector observed from the Beidou geostationary satellite during 2016–2018, Remote Sens., 2020, vol. 12, p. 3406. https://doi.org/10.3390/rs12203406

    Article  Google Scholar 

  25. Kassa, T., Damtie, B., Bires, A., Yizengaw, E., and Cilliers, P., Storm-time characteristics of the equatorial ionization anomaly in the East African sector, Adv. Space Res., 2015, vol. 56, pp. 57–70. https://doi.org/10.1016/j.asr.2015.04.002

    Article  Google Scholar 

  26. Kuai, J., Liu, L., Liu, J., Sripathi, S., Zhao, B., Chen, Y., Le, H., and Hu, L., Effects of disturbed electric fields in the low-latitude and equatorial ionosphere during the 2015 St. Patrick’s Day storm, J. Geophys. Res., 2016, vol. 121, pp. 9111–9126. https://doi.org/1002/2016JA022832

    Article  Google Scholar 

  27. Kuai, J., Liu, L., Lei, J., Liu, J., Zhao, B., Chen, Y., Le, H., Wang, Y., and Hu, L., Regional differences of the ionospheric response to the July 2012 geomagnetic storm, J. Geophys. Res., 2017, vol. 122, p. 4654. https://doi.org/10.1002/2016JA023844

    Article  Google Scholar 

  28. Kutiev, I., Watanabe, S., Otsuka, Y., and Saito, A., Total electron content behavior over Japan during geomagnetic storms. J. Geophys. Res. Space Phys., 2005, vol. 110, p. A01308. https://doi.org/10.1029/2004JA010586

    Article  Google Scholar 

  29. Kutiev, I., Otsuka, Y., Saito, A., and Watanabe, S., GPS observations of poststorm TEC enhancements at low latitudes, Earth Planets Space, 2006, vol. 58, pp. 1479–1486. https://doi.org/10.1186/BF03352647

    Article  Google Scholar 

  30. Liemohn, M.W. and Katus, R., Is the storm time response of the inner magnetospheric hot ions universally similar or driver dependent?, J. Geophys. Res., 2012, vol. 117, p. A00L03. https://doi.org/1029/2011JA017389

    Article  Google Scholar 

  31. Lui, J.Y., Chiu, C.S., and Lin, C.H., The solar flare radiation responsible for sudden frequency deviation and geomagnetic fluctuation. J. Geophys. Res., 1996, vol. 101, p. 10855. https://doi.org/10.1029/95JA03676

    Article  Google Scholar 

  32. Liu, L., Zou, S., Yao, Y., et al., Multiscale ionosphere responses to the May 2017 magnetic storm over the Asian sector, GPS Solutions., 2020, vol. 24. https://doi.org/10.1007/s10291-019-0940-1

  33. Mannucci, A.J., Wilson, B.D., and Edwards, C.D., A new method for monitoring the Earth’s ionospheric total electron content using the GPS global network, in Proceedings of the 6th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, Utah: ION GPS, 1993, pp. 1323–1332.

  34. Mannucci, A.J., Tsurutani, B.T., Ijima, B.A., Komjathy, A., Saito, A., Gonzalez, W.D., Guarnieri, F.L., Kozyra, U.J., and Skoug, R., Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storm”, Geophys. Res. Lett., 2005, vol. 32, p. L12S02. https://doi.org/1029/2004GL021467

    Article  Google Scholar 

  35. Mendillo, M., Storms in the ionosphere: Patterns and processes for total electron content, Rev. Geophys., 2006, vol. 44, p. RG4001.

    Article  Google Scholar 

  36. Muhtarov, P., Kutiev, I., and Cander, L., Geomagnetically correlated autoregression model for short-term prediction of ionospheric parameters, Inverse Probl., 2002, vol. 18, pp. 49–65. https://doi.org/10.1088/0266-5611/18/1/304

    Article  Google Scholar 

  37. Nava, B., Rodríguez Zuluaga, J., Alazo Cuartas, K., Kashcheyev, A., Migoya Orué, Y., Radicella, S. M., et al., Middle- and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm, J. Geophys. Res., 2016, vol. 121, pp. 3421–3438. https://doi.org/10.1002/2015JA022299

    Article  Google Scholar 

  38. Nikolaeva, N.S., Yermolaev, Y.I., and Lodkina, I.G., Dependence of geomagnetic activity during magnetic storms on the solar wind parameters for different types of streams, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 1, pp. 49–65.

  39. Ovodenko, V.B., Klimenko, M.V., Zakharenkova, I.E., Oinats, A.V., Kotova, D.S., Nikolaev, A.V., et al., Spatial and temporal evolution of different-scale ionospheric irregularities in Central and East Siberia during the 27–28 May 2017 geomagnetic storm, Space Weather, 2020, vol. 18, p. e2019SW002378. https://doi.org/10.1029/2019SW002378

  40. Pancheva, D., Mukhtarov, P., and Andonov, B., Global structure of ionospheric TEC anomalies driven by geomagnetic storms, J. Atmos. Sol. Terr. Phys., 2016, vol. 145, pp. 170–185. https://doi.org/10.1016/j.jastp.2016.04.015

    Article  Google Scholar 

  41. Paul, A., Roy, B., and Ray, S., Das, A., and DasGupta, A., Characteristics of intense space weather events as observed from a low latitude station during solar minimum, J. Geophys. Res., 2011, vol. 116, p. A10307. https://doi.org/1029/2010JA016330

    Article  Google Scholar 

  42. Plotnikov, I.Y. and Barkova, E.S., Nonlinear dependence of Dst and AE indices on the electric field of magnetic clouds, Adv. Space Res., 2007, vol. 40, pp. 1858–1862.

    Article  Google Scholar 

  43. Ray, S., Roy, B., and Das, A., Occurrence of equatorial spread F during intense geomagnetic storms, Radio Sci., 2015, vol. 50, pp. 563–573. https://doi.org/1002/2014RS005422

    Article  Google Scholar 

  44. Roy, B. and Paul, A., Impact of space weather events on satellite-based navigation, Space Weather, 2013, vol. 11, pp. 680–686. https://doi.org/1002/2013SW001001

    Article  Google Scholar 

  45. Seemala, G.K. and Valladares, C.E., Statistics of total electron content depletions observed over the South American continent for the year 2008, Radio Sci., 2011, vol. 46, RS5019. https://doi.org/10.1029/2011RS004722

    Article  Google Scholar 

  46. Sripathi, S. and Bhattacharyya, A., Quiet time variability of the GPS TEC and EEJ strength over Indian region associated with major sudden stratospheric warming events during 2005/2006, J. Geophys. Res., 2012, vol. 117, p. A05305. https://doi.org/10.1029/2011JA017103

    Article  Google Scholar 

  47. Turner, D.L., Angelopoulos, V., Li, W., et al., Competing source and loss mechanisms due to wave-particle interactions in Earth’s outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm, J. Geophys. Res., 2014, vol. 119, pp. 1960–1979. https://doi.org/1002/2014JA019770

    Article  Google Scholar 

  48. Turner, N.E., Cramer, W.D., Earles, S.K., and Emery, B.A., Geoefficiency and energy partitioning in CIR-driven and CME-driven storms, J. Atmos. Sol. Terr. Phys., 2009, vol. 71, pp. 1023–1031.

    Article  Google Scholar 

  49. Uma, G., Brahmanandam, P.S., Kakinami, Y., Dmitriev, A., Latha Devi, N.S.M.P., Uday Kiran, K., Prasad, D.S.V.V.D., Rama Rao, P.V.S., Niranjan, K., Babu, C.S., and Chu, Y.H., Ionospheric responses to two large geomagnetic storms over Japanese and Indian longitude sectors, J. Atmos. Sol. Terr. Phys., 2012, vol. 74, pp. 94–110. https://doi.org/10.1016/j.jastp.2011.10.001

    Article  Google Scholar 

  50. Wang, W., Lei, J., Burns, A.G., Solomon, S.C., Wiltberger, M., Xu, J., Zhang, Y., Paxton, L., and Coster, A., Ionospheric response to the initial phase of geomagnetic storms: Common features. J. Geophys. Res.: Space Phys., 2010, vol. 115, p. A07321. https://doi.org/10.1029/2009JA014461

    Article  Google Scholar 

  51. Xiong, C., Lühr, H., and Fejer, B.G., Response of equatorial electrojet, vertical plasma drift, and thermospheric zonal wind to enhanced solar wind input, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 5653–5663. https://doi.org/10.1002/2015JA022133

    Article  Google Scholar 

  52. Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., and Yermolaev, M.Y., Recovery phase of magnetic storms induced by different interplanetary drivers, J. Geophys. Res., 2012, p. 117, p. A08207. https://doi.org/10.1029/2012JA017716

  53. Yuan, T., Zhang, Y., Cai, X., She, S.-Y., and Paxton, L.J., Impacts of CME-induced geomagnetic storms on the midlatitude mesosphere and lower thermosphere observed by a sodium lidar and TIMED/GUVI, Geophys. Res. Lett., 2015, vol. 42, pp. 7295–7302. https://doi.org/10.1002/2015GL064860

    Article  Google Scholar 

  54. Yue, X., Wan, W., Liu, L., Liu, J., Zhang, S., Schreiner, W.S., Zhao, B., and Hu, L., Mapping the conjugate and corotating storm-enhanced density during 17 March 2013 storm through data assimilation, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 12202-12210. https://doi.org/10.1002/2016JA023038

    Article  Google Scholar 

  55. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.C., Yashiro, S., and Zhukov, A.N., Solar and interplanetary sources of major geomagnetic storms (Dst ≤ –100 nT) during 1996–2005, J. Geophys. Res., 2007, vol. 112, p. A10102. https://doi.org/10.1029/2007JA012321

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The data used in the study were provided by the AFREF (http://afrefdata.org). The space weather indices are available at the NASA OMNI website (http://omniweb.gsfc. nasa.gov/). We appreciate the valuable comments by anonymous reviewers, which improved the paper significantly.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

C.M.A. provided the main ideas, developed the methodology model, conceived and performed the comparison experiments, and analyzed the results; F.N.O., K.C. provided supervision and mentorship.

Corresponding author

Correspondence to Chukwuma Moses Anoruo.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anoruo, C.M., Okeke, F.N. & Okpala, K.C. Total Electron Content Variability in the African Ionosphere Observed during Ascending and Decaying Geomagnetic Storms. Geomagn. Aeron. 63, 839–853 (2023). https://doi.org/10.1134/S001679322360042X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679322360042X

Navigation