Skip to main content
Log in

Ecological and Geochemical Assessment of Snow Cover in the Area Affected by the Apatite–Nepheline Production of the Kola Peninsula

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—The chemical composition of the snow cover in the area of industrial development of the apatite–nepheline deposit is analyzed to estimate the ecological and geochemical environmental impact of the mining enterprise. It has been established that the snow of the studied area of the Khibiny is enriched in Cl and Na+ ions (on average 38 and 41 µeq/L), and relations between basic ions (Cl > \({\text{SO}}_{4}^{{2 - }}\) > \({\text{HCO}}_{3}^{ - }\) and Na+> Ca2+> K+ = Mg2+) and mineralization value (from 1.7 to 6.4 mg/L) are typical for precipitates in the coastal regions of the northern European Russia. The average content of total nitrogen and phosphorus in the snow of the impact zone is 495 and 26 μg/L, respectively, which is 3 and 5 times higher than in the background zone. This is explained by their influx into the atmosphere with dust emissions from the mining enterprise. The content of organic matter (CODMn and TOC 5.5 and 5.8 mg/L) in the snow of the impact zone is about two times higher than in the snow of the background zone and in the water of the Khibiny water bodies. Probably, the elevated content of organic matter in the snow is associated with the supply of organic substances-reagents from the tailing dump, which are used to obtain apatite concentrate, as well as the intensive growth of unicellular green algae Chlamydomonas nivalis (Bauer) Wille under conditions of an increased content of nutrients and long daylight hours. The concentrations of a number of heavy metals (Zn, Mn, Cu, Cr, Pb, Cd) in the snow of the impact zone exceed their contents in the water of water body of the impact zone (13.4, 5.4, 3.8, 0.8, 0.65, 0.035 μg/L, respectively). These metals enter the snow as a part of dust emissions from the mine, and as polluted air masses from the industrial regions of Eurasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. AMAP Assessment 2002: Heavy Metals in the Arctic (AMAP, Oslo, 2005).

  2. K. Banda, M. Mulema, I. Chomba, M. Chomba, J. Levy, and I. Nyambe, “Investigating groundwater and surface water interactions using remote sensing, hydrochemistry, and stable isotopes in the Barotse Floodplain, Zambia,” Geology, Ecology, and Landscapes, (2023). https://doi.org/110.1080/24749508.2023 (2023).2202450

  3. A. V. Barabanov, T. A. Kalinina, A. A. Kiselev, and A. I. Krasnobaev, Giant in the Kibiny (Ruda i Metally, Moscow, 1999) [in Russian].

    Google Scholar 

  4. N. Bertler, P. A. Mayewski, and A. Aristarain, et al., “Snow chemistry across Antarctica,” Annals of Glaciology 41, 167–179 (2005).

    Article  Google Scholar 

  5. M. V. Dauvalter, V. A. Dauvalter, D. B. Denisov, and Z. I. Slukovskii, “Contamination of mountain lake by runoffs of the apatite–nepheline production,” Tr. Fersman. Nauchn. Sessii GI KNTs RAN, No. 18, 150–154 (2021).

    Google Scholar 

  6. M. V. Dauvalter, V. A. Dauvalter, S. S. Sandimirov, D. B. Denisov, and Z. I. Slukovskii, “Hydrochemical monitoring of surface waters in the influence zone of the MPP Olenii Ruchei,” Tr. Fersman. Nauchn. Sessii GI KNTs RAN, No. 19, 80–85 (2022a).

    Google Scholar 

  7. V. A. Dauvalter, M. V. Dauvalter, N. V. Saltan, and E. N. Semenov, “Chemical composition of atmospheric precipitates within the influence zone of the Severonikel smelter,” Geochem. Int. 46 (10), 1064–1069 (2008).

    Article  Google Scholar 

  8. V. A. Dauvalter and M. V. Dauvalter, “Ecological state of groundwater of the JSC Apatite mine,” Tr. Fersman. Nauchn. Sessii GI KNTs RAN, No. 16, 131–135 (2019).

    Google Scholar 

  9. V. A. Dauvalter and M. V. Dauvalter, “Hydrochemical mode of Komarionoe Lake, Khibiny alkaline massif, Murmansk region,” Tr. Fersman. Nauchn. Sessii GI KNTs RAN, No. 17, 158–162 (2020).

    Google Scholar 

  10. V. A. Dauvalter and N. A. Kashulin, “Influence of activity of mining-metallurgical enterprises on the chemical composition of bottom sediments of Lake Imandra, Murmansk region,” Biosfera. 7 (3), 295–314 (2015).

    Google Scholar 

  11. V. A. Dauvalter, M. V. Dauvalter, and Z. I. Slukovskii, “The dynamics of the chemical composition of surface water in the zone of influence of North–West Phosphorous Company JSC. IOP Conf. Series: Earth Environ. Sci. 539, 012026 (2020).

  12. V. Dauvalter, Z. Slukovskii, D. Denisov, and A. Guzeva, “A paleolimnological perspective on Arctic mountain lake pollution,” Water 14 (24), 4044 (2022).

    Article  Google Scholar 

  13. V. A. Dauvalter, D. B. Denisov, M. I. Dinu, and Z. I. Slukovskii, “Biogeochemical fea-tures of functioning of small Arctic lakes of the Khibiny Mountains under climatic and envi-ronmental changes,” Geochem. Int. 60 (6), 560–574 (2022b).

    Article  Google Scholar 

  14. V. A. Dauvalter, D. B. Denisov, and Z. I. Slukovskii, “Impact of wastewaters from apa-tite–nepheline production on the biogeochemical processes in an Arctic mountain lake,” Geo-chem. Int. 60 (10), 1014–1028 (2022c).

    Article  Google Scholar 

  15. D. B. Denisov, S. A. Valkova, and N. A. Kashulin, “Algal communities and macrozzobenthos of aqueous ecosystems of the Khibiny mountain massif (Kola Peninsula),” Vestn. Kolsk.nauchnogo tsentra RAN. 10 (1), 23–35 (2018).

  16. M. I. Dinu and D. Y. Baranov, “Role of humic organic compounds in controlling equilibri-um speciation of elements in lakes in the Kola Peninsula: experimental and computation results. Geochem. Int. 60 (1), 67–77 (2022).

    Article  Google Scholar 

  17. A. E. Fersman, Our Apatite (Nauka, Moscow, 1968).

    Google Scholar 

  18. P. T. Gauthier, T. A. Blewett, E. R. Garman, Ch. E. Schlekat, E. T. Middleton, E. Suominen, and A. Crémazy, “Environmental risk of nickel in aquatic Arctic ecosystems,” Sci. Tot. Environ. 797, 148921 (2021).

    Article  Google Scholar 

  19. R. Gradinger and D. Nürnberg, “Snow algal communities on Arctic pack ice floes domi-nated by Chlamydomonasnivalis (Bauer),” Wille. Proc. NIPR Syrop. Polar Biol. 9, 35–43 (1996).

  20. R. W. Hoham and D. W. Blinn, “Distribution of cryophilic algae in an arid region, the American Southwest,” Phycologia 18, 133–145 (1979).

    Article  Google Scholar 

  21. Intercomparison 1630: pH, Conductivity, Alkalinity, NO 3 -N, Cl, SO 4 , Ca, Mg, Na, K, TOC, Al, Fe, Mn, Cd, Pb, Cu, Ni and Zn. ICP Waters Report 129/2016 (Norwegian Institute for Water Research, Oslo, 2016), Report No. 7081.

  22. Yu. A. Izrael, I. M. Nazarov, A. Ya. Pressman, et al., Acid Rains (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  23. M. C. Jung, “Heavy metal contamination of soils and waters in and around the Imcheon Au–Ag mine, Korea,” App. Geochem. 16 (11–12), 1369–1375 (2001).

    Article  Google Scholar 

  24. M. C. Jung and I. Thornton, “Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea,” App. Geochem. 11 (1–2), 53–59 (1996).

    Article  Google Scholar 

  25. M. C. Jung and I. Thornton, “Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb–Zn mine in Korea,” Sci. Tot. Envi-ron. 198 (2), 105–121 (1997).

    Google Scholar 

  26. N. A. Kashulin, A. Bekkelund, V. A. Dauvalter, and O. V. Petrova, “Apatite mining and processing production and eutrophication of the Arctic Lake, Imandra,” Arktika: Ekol. Ekon. 35 (3), 16–34 (2019).

    Google Scholar 

  27. N. A. Kashulin, D. B. Denisov, S. S. Sandimirov, V. A. Dauvalter, T. G. Kashulina, D. N. Malinovskii, O. I. Vandysh, B. P. Ilyashuk, and L. P. Kudryavtseva, Anthropogenic Changes of Aqueous Systems of the Khibiny Mountainous Massif (Murmansk Region) (Kol’sk. Nauchn. Ts. RAN, Apatity, 2008) [in Russian].

    Google Scholar 

  28. N. A. Kashulin, S. S. Sandimirov, V. A. Dauvalter, L. P. Kudryavtseva, P. M. Terentev, D. B. Denisov, and S. A. Valkova, Annotated Ecological Catalogue of Lakes of the Murmansk Region (Eastern Part. Barents Sea Basin) (KNTs RAN, Apatity, 2010) [in Russian].

  29. E. I. Kotova and V. P. Shevchenko, “Influence of distal atmospheric transfer on the formation of ionic composition of atmospheric precipitates and snow cover of the coastal zone of the western sector of the Russian Arctic,” Fundament. Issled. Geograf. Nauki, No. 12, 2378–2382 (2014).

    Google Scholar 

  30. S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inform. Theor. 28 (2), 129–137 (1982).

    Article  Google Scholar 

  31. J. MacQueen, “Some methods for classification and analysis of multivariate observations,” In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Ed. by L. M. Le Cam and J. Nyeman (University of California, Berkeley, 1965), pp. 281–297.

  32. G. Merrington and B. Alloway, “The transfer and fate of Cd, Cu, Pb and Zn from two historic metalliferous mine sites in the UK,” App. Geochem. 9 (6), 677–687 (1994).

    Article  Google Scholar 

  33. V. A. Mironenko, E. V. Molskii, and V. G. Rumynin, Study of Contamination of Groundwaters in Mining Districts (Nedra, Leningrad, 1988) [in Russian].

    Google Scholar 

  34. V. A. Mironenko, E. V. Molskii, and V. G. Rumynin, Mining Hydrogeology (Nedra, Moscow, 1989) [in Russian].

    Google Scholar 

  35. T. I. Moiseenko, V. A. Dauvalter, A. A. Lukin, L. P. Kudryavtseva, B. P. Ilyashuk, E. A. Ilyashuk, S. S. Sandimirov, L. Ya. Kagan, O. I. Vandysh, A. N. Sharov, Yu. N. Sharova, and I. M. Koroleva, Anthropogenic Modifications of the Lake Imandra Ecosystem (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  36. T. I. Moiseenko, L. P. Kudryavtseva, I. V. Rodyushkin, V. A. Dauvalter, A. A. Lukin, and N. A. Kashulin, “Airborne contaminants by heavy metals and aluminium in the freshwater ecosys-tems of the Kola subarctic region (Russia),” Sci. Tot. Environ. 160/161, 715–727 (1995).

    Article  Google Scholar 

  37. V. N. Moretskii, “Some characteristics of long-term large-scale ocean interaction with atmosphere of the Nortehrn hemisphere,” Tr. AANII 319, 4–23 (1976).

    Google Scholar 

  38. J. L. Mosser, A. G. Mosser, and T. D. Brock, “Photosynthesis in the snow: the alga Chlamydomonas nivalis (Chlorophyceae),” J. Phycology. 13 (1), 22–27 (1977).

    Article  Google Scholar 

  39. W. Mu, Y. Chen, Y. Liu, X. Pan, and Y. Fan, “Toxicological effects of cadmium and lead on two freshwater diatoms,” Environ. Toxicol. Pharmacol. 59, 152–162 (2018).

    Article  Google Scholar 

  40. A. M. Nikanorov, Hydrochemistry (Gidrometeoizdat, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  41. Overview of the Environmental State at the CIS Countries, Ed. by G. M. Chernogaeva (Rosgidromet, Moscow, 2022) [in Russian].

    Google Scholar 

  42. J. M. Pacyna and E. G. Pacyna, “An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide,” Environ. Rev. 4, 269–298 (2001).

    Article  Google Scholar 

  43. A. S. Palmer, T. D. van Ommen, M. A.J. Curran, and V. Morgan, “Ice–core evidence for a small solar–source of atmospheric nitrate,” Geophys. Res. Lett., 28 (10), 1953–1956 (2001).

    Article  Google Scholar 

  44. N. A. Pershina, E. S. Semenets, M. T. Pavlova, and P. F. Svistov, “Influence of weather conditions on the chemical composition of snow cover,” Klimat Priroda 41 (4), 26–34 (2021).

    Google Scholar 

  45. N. E. Ratkin, “Applicability of the method of calculation of sulfate, nickel, and copper contents in snow cover to geoecological studies,” Geochem. Int. 40 (2), 177–188 (2002).

    Google Scholar 

  46. D. Remias, U. Lutz-Meindl, and C. Lutz, “Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis,” Eur. J. Phycol. 40, 259–268 (2005).

    Article  Google Scholar 

  47. C. H. Romesburg, Cluster Analysis for Researchers (Lifetime Learning Publications, Belmont, 1984) [in Russian].

    Google Scholar 

  48. E. S. Semenets, P. F. Svistov, and A. S. Talash, “Chemical composition of atmospheric precipitates of the Russian Transpolar Region,” Izv. Tomsk. Politekhn. Univ. Inzh. Geores. 328 (3), 27–36 (2017).

    Google Scholar 

  49. N. A. Shapovalov, V. A. Poluektova, A. I. Gorodov, A. A. Krainii, I. L. Vintskovskaya, and M. M. Ryadinskii, “Russian phosphorus-bearing SAA as active accumulators of complex enrichment of apatite–nepheline ores,” Fundament. Issled., No. 2–8, 1689–1693 (2015).

  50. Standard Method for Examination for Water and Wastewater, 20th Edition, Ed. by L.S. Clescerl, A.E. Greenberg, and A.D. Eaton, (American Public Health Association, Washington, 1999).

    Google Scholar 

  51. M. Terashima, K. Umezawa, S. Mori, H. Kojima, and M. Fukui, “Microbial community analysis of colored snow from an Alpine snowfield in northern Japan reveals the prevalence of betaproteobacteria with snow algae,” Front. Microbiol. 8, 1481 (2017).

    Article  Google Scholar 

  52. D. Wagenbach, K. O. Münnich, U. Schotterer, and H. Oeschger, “The anthropogenic impact on snow chemistry at Colle Gnifetti, Swiss Alps,” Ann. Glaciol., No. 10, 183–187 (1988).

  53. D. Wagenbach, M. Legrand, H. Fischer, F. Pichlermayer, and E. Wolff, “Atmospheric near-surface nitrate at coastal Antarctic sites,” J. Geophys. Res. 103 (D9), 11 007–11 020 (1998).

  54. F. Wang, X. Zhang, F. Wang, M. Song, Z. Li, and J. Ming, “Urban air quality in Xinjiang and snow chemistry of Urumqi Glacier No. 1 during COVID‑19’s restrictions,” Environ. Sci. Pollut. Res. 29, 76026–76035 (2022).

    Article  Google Scholar 

  55. V. N. Yakovenchuk, G. Yu. Ivanyuk, Ya. A. Pakhomovskii, and Yu. P. Menshikov, Minerals of the Khibiny Massif (Zemlya, Moscow, 1999) [in Russian].

    Google Scholar 

  56. E. M. Zubova, N. A. Kashulin, V. A. Dauvalter, D. B. Denisov, S. A. Valkova, O. I. Vandysh, Z. I. Slukovskii, P. M. Terentyev, and A. A. Cherepanov, “Long–term environmental monitoring in an Arctic Lake polluted by metals under climate change,” Environments 7 (5), 34 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to scientists from Institute of the North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciencesf or the performance of field works and chemical analyses. We also thank scientific editor M.I. Dinu.

Funding

This work was performed in the framework of government-financed project of the Institute of the North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences (project nos. FMEZ-2021-0043 and FMEZ-2022-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Dauvalter.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dauvalter, V.A., Sandimirov, S.S., Denisov, D.B. et al. Ecological and Geochemical Assessment of Snow Cover in the Area Affected by the Apatite–Nepheline Production of the Kola Peninsula. Geochem. Int. 61, 1308–1322 (2023). https://doi.org/10.1134/S0016702923120029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923120029

Keyword:

Navigation